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Bordism

Let M,N be smooth n-manifolds without boundary.

A (co)bordism
from M to N is an (n + 1)-manifold W such that ∂W = M ⊔ N.

Figure: Two bordisms from S1 to S1 ⊔ S1.

If there is a bordism from M to N, we say that M and N are
bordant.
This defines an equivalence relation on manifolds. We write Ωn for
the set of bordism classes of n-manifolds, and [M] for the bordism
class of M.
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The Bordism Ring

The set Ωn admits an abelian group structure, where

[M] + [N] = [M ⊔ N],

and the zero element is [∅].

We can turn Ω∗ into a graded ring, where

[M] · [N] = [M × N],

and the identity element is [pt].
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Bordism as a Homology Theory

A singular n-manifold in X is a continuous map M → X for M a
smooth n-manifold.

Call two singular n-manifolds f1 : M → X and f2 : N → X bordant
if there is a singular (n + 1)-manifold with boundary F : W → X
such that

∂W = M ⊔ N, (i.e. W is a bordism from M to N),

the restriction of F to M is f1, and

the restriction of F to N is f2.

Write Ωn(X ) for the set of singular n-manifolds in X modulo
bordism. Again, this admits a group structure, where

[f1] + [f2] = [f1 ⊔ f2 : M ⊔ N → X ].

The assignments X 7→ Ωn(X ) define a generalised homology
theory. That is, the Ωn(pt) is nontrivial.
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The Bordism Groups of a Point

So, what is Ωn(pt)? Geometrically? Algebraically?

Geometrically, it’s Ωn, the bordism group/ring from earlier!

Algebraically, we have the following theorem.

Theorem (Thom, 1954)

There is an isomorphism of graded rings

Ω∗(pt) ∼= F2[x2, x4, x5, x6, x8, . . . ],

with an indeterminate in each positive degree n where n ̸= 2i − 1.
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Spectra

The proof uses stable homotopy theory.

This is the study of
properties of spaces which are invariant under suspension.

Geometric objects called spectra capture stable phenomena in a
more concrete way. They behave a bit like abelian groups.
Furthermore, every spectrum represents a homology theory, and
every homology theory is represented by a spectrum.

A spectrum X is (roughly)

a collection of spaces Xn, and

maps sn : ΣXn → Xn+1.

There is a spectrum MO called the unoriented bordism spectrum.
It represents the bordism homology theory.
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Spectra

There is a notion of a homotopy between two maps of spectra, and
an associated homotopy category of spectra, called the stable
homotopy category.

We can also define homotopy groups πn(X ) of a spectrum X to be
homotopy classes of maps from the sphere spectrum Sn into X .
There are isomorphisms of abelian groups

Ωn(pt) ∼= πn(MO).
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Ring Spectra

Spectra can be thought of as a topological analogue of abelian
groups.

The stable homotopy category has a biproduct ∨, called the wedge
sum (like ⊕).

The stable homotopy category is symmetric monoidal. That is, it is
equipped with an operation ∧, called the smash product (like ⊗).

Thus we can define a ring spectrum to be a spectrum R together
with a map R ∧ R → R, which satisfies some identities in the
homotopy category (analogous to those for rings).
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Ring Spectra cont.

The spectra representing ordinary homology with coefficients in a
ring R are called Eilenberg-Mac Lane spectra, and are denoted
HR. These can be made into ring spectra.

The construction of MO supplies it with a ring spectrum structure,
and π∗(MO) becomes a graded ring.

There is an isomorphism of graded rings

Ω∗ ∼= π∗(MO).

We know the structure of π∗(MO) as a ring, but what about the
structure of MO as a ring spectrum?
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Ring Spectra of Characteristic 2

Given a ring spectrum R, if π0(R) ∼= F2, then we say R has
characteristic 2.

If R is also commutative ring spectrum up to
homotopy, then it has a simple structure (up to homotopy).

Theorem (Boardman, 1980)

If R is a commutative ring spectrum of characteristic 2 and there is
an additive equivalence

R ≃ Hπ∗(R) =
∨
i∈I

ΣniHF2

then the equivalence is multiplicative.

The hypothesis about the additive equivalence is redundant.

Theorem (Pajitnov-Rudyak 1985)/(Würgler, 1986)

If R is a commutative ring spectrum of characteristic 2, then it is
additively (and therefore multiplicatively) equivalent to HR.
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Highly Structured Ring Spectra

The stable homotopy category is badly behaved (like the homotopy
category of spaces is). For example, it’s not (co)complete.

We want to be able to work with spectra before passing to the
stable homotopy category.

A spectrum with a smash product operation may not satisfy the
ring identities on the nose, but only satisfy them up to homotopy.

If we only require that identities are satisfied up to homotopy, then
the rings we get are badly behaved.

If we keep track of the homotopies to ensure they behave in a
coherent manner, then the rings are better-behaved.
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An and En Structures

Suppose R is an associative ring spectrum up to homotopy, with
product µ : R ∧ R → R.

This means there is a homotopy between the maps

µ(µ(−,−),−), µ(−, µ(−,−)) : R ∧ R ∧ R → R.

That is, there is a function

H : R ∧ R ∧ R ∧ I → R

(where I is an ‘interval object’), which restricts to the two
multiplications at the endpoints of the interval object.

A choice of such an H is called an A3 structure on R.
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An and En Structures cont.

Using this homotopy, we can form a pentagon.

of maps, i.e. a map R∧4 ∧ P → R (where P is the pentagon).

The act of travelling around the pentagon might be nontrivial!

A choice of nullhomotopy of the pentagon map (i.e. a cell that fills
in the pentagon) is called an A4 structure on R.
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An and En Structures cont.

Repeating something similar for maps R∧n → R defines an An

structure, and eventually an A∞ structure.

There are analogous structures which encode commutativity, and
such structures are known as En structures for 2 ≤ n ≤ ∞.

Some bordism spectra, for example MO, MSO, MU, etc., admit
natural E∞ structures.
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Highly Structured Ring Spectra of Characteristic 2

A wedge of Eilenberg-Mac Lane spectra with π∗ a commutative
ring of characteristic 2 has a standard E∞ multiplication, known as
the Boardman multiplication.

There are En ring spectra of characteristic 2 which are not
equivalent to the corresponding ring spectrum with the Boardman
multiplication.
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Dyer-Lashof Operations

An En ring spectrum has extra structure on its mod 2 homology. It
admits operations called Dyer-Lashof operations.

Maps of En ring spectra preserve such operations.

Theorem (Gilmour, 2006)

There is an E5 operation which is not preserved by the unique (up
to homotopy) E2 map HF2 → MO.

Therefore there is no E5 map HF2 → MO, so the En multiplication
on MO (for n ≥ 5) is not the Boardman multiplication.

There are polynomial En ring spectra Pn(X ) for any spectrum X .
For X = Sk , the homology is freely generated by the Dyer-Lashof
operations.
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MO as an En Ring Spectrum

The E1 and E2 structures on MO have nice descriptions.

Theorem (S.)

There is an E1 equivlance

HF2 ∧ P1(S
2) ∧ P1(S

4) ∧ P1(S
5) ∧ · · · → MO,

where the left-hand side has a smash factor P1(S
n) for every

positive n ̸= 2i − 1.
There is an E2 equivalence

HF2 ∧ P2(S
2) ∧ P2(S

4) ∧ P2(S
6) ∧ · · · → MO,

where the left-hand side has a smash factor P2(S
n) for every

positive even n.

That is, as an E1 or an E2 ring spectrum, MO is ‘polynomial’.
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MO as an En ring spectrum cont.

This is not true in the E3 case, as the homology of Pn is too big
for n ≥ 3.
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The Euler Characteristic

The Euler characteristic χ(X ) of a space X is a homotopy
invariant.

It can be obtained by triangulating a space, then taking the
alternating sum of the number of simplices used.

Alternatively, it is the alternating sum of the ranks of the
homology groups of a space.

Modulo 2, it’s actually a bordism invariant! Furthermore, it is
additive (wrt. disjoint union) and multiplicative (wrt. cartesian
product).

Therefore we have a ring homomorphism

Ω∗ → F2[t],

M 7→ χ(M)tdimM .
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The Euler Characteristic cont.

What about on the level of homology theories?

Theorem (Weber, 2007)

There is a natural transformation Ω∗(−) → Eh∗(−) which, when
evaluated at the point, recovers the Euler characteristic
homomorphism.

What about on the level of highly structured ring spectra?

There are easy maps in the E1 and E2 cases, because MO is
polynomial.

Unclear for En for n ≥ 3 without knowing more about MO, or
having a highly structured variant of Weber’s method.
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