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The notion of a centre, e.g. the centre of a group, ring or monoid, is fun-
damental to algebra. For concrete algebraic structures, the centre is defined
as

Z(A):={z€A:az=za}.
Applications include

e checking Morita equivalence, since the centre of a ring is a Morita invariant
property;

e defining R-algebras: if A is a ring then an R-algebra structure on A is
equivalently a map R — Z(A);

e and much, much more!

This definition doesn’t work if your objects aren’t ‘sets with structure’ (e.g.
the homotopy category of topological spaces) or maybe your category is con-
cretizable, but the structure doesn’t obviously descend to subobjects in the way
required for this definition. There are a number of alternative definitions for
the categorically minded. Definitions and comparisons will be carried out using
tools which are available in a variety of contexts (Yoneda lemma, tensor-hom
adjunction, monadicity, ends).

1 Categorical definitions of centre

To avoid discussing concepts of enriched category theory, we will focus on the
case of ordinary categories and the category of sets. As such, in this section, A
is a monoid in Set.

There are 3 handy criteria for any definition of centre (bearing in mind that
the aim is to be able to replace sets with something else):

1. a commutative multiplication;
2. a universal property (biggest subobject such that...);
3. simple criteria for its existence.

Here are some candidate definitions.



Definition 1. The limit centre of A is the equalizer
Z(A) --» A= [A, A],
where the arrows A — [A, A] are adjunct to pa, ua o7 : A2 — A.

This satisfies 2 and 3 easily (it has the universal property of the limit, and
it exists if your category has equalizers), but 1 is not so clear.
For background on the following definition, see [Vit92].

Definition 2. The bimodule centre of A is the hom set Z(A) := Hom4j4(4, A)
(the homomorphisms from A to itself when considered as an A|A-bimodule).

This one satisfies 3, and 1 (by the Eckmann—Hilton argument, since A is the
monoidal unit). Criterion 2 is less clear here.

Crystalised in the work of Kontsevich [Kon99, Claim 1] and realised by Lurie
[Lurl?, 5.3], the following definition works in a more general context than the
others, so we fix a monoidal category C and an object M of C. The definition
requires a category of module structures.

Definition 3. Let Mod C denote the category consisting of

e objects triples (R,N,p: R® N — N), where R is a monoid in C and p is
an R-module structure on N, and

e morphisms (R, N, p) = (R',N’,p’) given by pairs (¢ : R— R, f : N —
@*N'), where ¢ is a map of monoids and f is a map of R-modules.

Definition 4. Let C be a monoidal category and let M € C. The universal
centre of M, denoted Z¢(M), is the terminal object of the pullback below.

Mod(M) —— Mod(C
o]
{M} —¢C

Here, the vertical map sends a triple to its module, and the rightmost arrow
includes the one object category consisting of M and its identity map.

The objects of Mod(M) are monoids in C together with a module structure
on M. Note that, if C has internal hom objects, then Z¢o(M) = [M, M]. If we
want to recover the centre of a monoid of sets, we let C be the category of
monoids in Set.

Again, the Eckmann—Hilton argument covers 1, and it has a very clear uni-
versal property. It’s not immediately clear how to check existence.

One other object traditionally referred to as the centre is the centre of a
category. This was originally introduced in [BH61] for abelian categories, and
extended to enriched categories in [Lin8&0].



Definition 5. Let C be a category. The centre of C is the set of natural
transformations [Id¢, Id¢].

This can be used to get a definition of centre of a monoid via the delooping
construction.

Definition 6. Let A be a monoid in Set. The delooping of A, denoted BA, is
the category consisting of

e a single object e,

e morphisms Homp4(e,e) = A, with identity and composition law inherited
from the multiplication of A.

It looks a bit random at first, but here is the justification: such a natural
transformation 7 has one component 7, : ® — e € A which must satisfy the
condition 74 © @ = a o 1, which inside A translates to 1, commutes with a.

There is a sort of Venn diagram of centres, then[l]

Mult.

bimod

cat

Univ. Exists

2 Comparison of definitions

Our strategy for comparing these definitions is to compare the centre of a monoid
M to the centre of the delooping category BM.

2.1 The universal centre

Our aim is to prove that Zyionset(4) ~ [Idpa,Idgal.

IThe IATEX code producing this Venn diagram is from https://tex.stackexchange.com/
questions/236514/drawing-a-3-circle-venn-diagram-using-tikz.


https://tex.stackexchange.com/questions/236514/drawing-a-3-circle-venn-diagram-using-tikz
https://tex.stackexchange.com/questions/236514/drawing-a-3-circle-venn-diagram-using-tikz

Delooping extends to an adjunction:
B : Mon Set = Cat, : ©,

where Cat, is the category of pointed categories. Here, the left adjoint B is
fully faithful, and the right adjoint (2 sends a category to the monoid of endo-
morphisms of the distinguished object. Using this adjunction, we can rephrase
the desired statement as

ZMonset (M) =~ Q[BM, BM| ~ QZ¢a.(BM).

That is, if we can understand how the centre construction interacts with ad-
junctions, then the statement is proved. The diagram below commutes and the
horizontal arrows are all equivalences.

b
[S|A, RZ(LA)|A] 5 [S|A, RZ(LA)|RLA] L+ [LS|LA, Z(LA)|LA]

| | |

_\b
A, Al na- [A, RLA| ) (LA, LA

The monoid RZ(LA) is the centre of A if the fibre over Id 4 is contractible. The
equivalences mean that this fibre is isomorphic to the fibre over Idy, 4, which is
contractible because Z(LA) is the centre of LA.

2.2 Aside on the periodic table of categories

The IXTEX that encodes the following table has been extracted directly from

[BD9S).

n=20 n=1 n=2
k=0 sets categories 2-categories
k=1 monoids monoidal monoidal
categories 2-categories
k =2 | commutative braided braided
monoids monoidal monoidal
categories 2-categories
k=3 ¢ symmetric | weakly involutory
monoidal monoidal
categories 2-categories
k=4 ¢ ¢ strongly involutory
monoidal
2-categories
k=5 ¢ © <

2. k-tuply monoidal n-categories




In [BD9§|, the authors discuss some methods through which one can move
around the table. One of these they refer to as forming the generalised centre.
This is a way of moving downwards in the table. Delooping moves in the
North-East direction, and looping moves in the South-West direction. The
result of the previous section tells us that the diagram

categories
% l
z
monoids mon cats

ZJ/

comin. mon.

commutes, and the methods used, when fully generalised, tell us that this par-
allelogram will still commute wherever it is translated across the table. For
example, the Drinfeld centre is sometimes defined by starting at monoidal cat-
egories and taking the long route around the diagram. Similarly, Z(A) = A for
a commutative monoid A, and the Drinfeld centre Z(BA) has

~

HomZ(BA)((.v 6)7 (.a 6)) = A

2.3 The limit centre

It’s not immediately clear whether the set [Id¢,Idc] of all natural transforma-
tions posesses a universal property in such a way that we can exhibit it as a
limit. The key is in the word all. In terms of components, such a natural
transformation is a collection of functions o : C' — C' subject to the naturality
condition nco f = fone. Therefore the collection of all natural transformations
is the collection of such functions

[[ Home(C, C)
ceC

subject to the condition that the precomposition

Home(C, C) o, [Hom¢(C, D), Home (C, D)],
f=(g—=gof)
and postcomposition

Home (D, D) =% [Home(C, D), Home (C, D)],
[ (h— foh),

agree. In other words, this is an equalizer

Ide,Idc] --» J] Home(C,C) = ] [Home(C, D), Home(C, D)].
cec C,DeC

If we specialize to the case where C = BA, this reduces to

[IdBA,IdBA] -2 A= [A,A]



2.4 An aside on ends

The previous explanation is a bit wordy, and relies on the natural transformation
object being computed as an equalizer. This is not true in a higher categorical
context, as the natural transformations have to keep track of higher homotopies
as well.

For this, it’s useful to consider the intermediate notion of an end. Ends
are traditionally introduced as representing objects for wedges, but this defini-
tion is inconvenient for other contexts. Nevertheless, I'll use it as a segue for
introducing my preferred representability definition.

If you have a functor H : C°P x C — Set, then a wedge from X € Set to H
is a collection of maps X —< H(C,C) such that the diagram below commutes
for every f: C — C'.

X —< . H(C,0)

- I+

H(C',C" — H(C,C)
Since this diagram commutes, it is sensible to say that a wedge associates to
every f € Home(C,C') a map H(Id, f) onc = H(f,1d) oner : X — H(C,C").
In other words, we have a collection of functions nc ¢ : Home(C,C') —
Homge (X, H(C,C")). Functoriality of H assures us that the diagram below
commutes.

Hom¢(C, C") Home(€,9) Home(C, C")

nC,C/J J{T]CYC//

Homge (X, H(C,C")) —— Homge (X, H(C,C"))
Homset (X, H(C,f))

There is a similar diagram for the first argument, and together these amount
to naturality of the family nc ¢ with respect to C° x C. That is, a wedge
from X into H is equivalently a natural transformation from Home(—,—) to
Homget (X, H(—, —)).

Definition 7. The end of H : C°? x C — Set is, if it exists, the set fc H such
that there are isomorphisms, natural in X, of the following form:

[X/CH} >~ [C°P x C, Set](Home (—, —), Homge (X, H(—, —))).

Though ends aren’t always equalizers, they usually have some sort of limit
formula. For instance, in oo-categories, ends can be computed as limits over
cosimplicial objects.



2.5 An aside on the Yoneda embedding

The tool that allows us to assert the well-definedness of the definition above is
the Yoneda embedding.

Definition 8. Let C be a category. The Yoneda embedding is the functor

y: C — [C°P, Set],
C — Home(—, C).

Equivalently, this functor is the image of the Hom¢ functor under the adjunction

equivalence
[C°P x C,Set] ~ [C, [CP, Set]].

This functor is fully faithful (the inverse is given by sending a natural trans-
formation n : Home(—, X) — Home(—,Y) to nx(Idx)). This is unbelievably
useful. One such application is a proof that the centre of a category is an end,
which has been adapted from [Hei25, Theorem 4.119]:

[C,C](Id¢, Ide) 255 [C, [COP, Set]](ye, ye)
b
OV, 109 x ¢, Set] (Home, Home)
~ [C°P x C, Set](Hom¢ (—, —), Homget (%, Home (—, —)))

~ {*,/Homc]
C
:/Homc.
C

2.6 Monadicity and the bimodule centre

The previous section also includes a proof that the bimodule centre agrees with
the centre of a category, but this is obscured because it involves thinking of the
bimodule category from a different perspective.

The reader will most likely be familliar with the following phenomenon. For
algebraic objects (e.g. groups, rings, monoids) isomorphisms can be checked
on the underlying set, and the group/ring/monoid structure is automatically
prserved. On the other hand, there are bijections of geometric objects (e.g.
topological spaces) which are not isomorphisms. This is captured by the idea
of monadicity.

Definition 9. Let L : C 2 D : R be an adjunction. The adjunction is monadic
if

e R reflects isomorphisms, and

e if, for every f,g : C — C’ such that U(f),U(g) admits a split coequal-
izer in C, the maps f,g have a coequalizer in D, and R preserves this
coequalizer.



A split coequalizer is a coequalizer as in the following diagram below,

- ~

L~ S K N
c ' D——5X
4>
g

where b;c =1Idx, ¢;b=a;¢g and f;a = Idp.

If an adjunction is monadic, then the source of the right adjoint is the cat-
egory of modules over the monad R o L associated to the adjunction. This
gives us a way of proving that certain categories are equivalent without directly
constructing an equivalence.

In particular, the free/forgetful adjunction

U : Bimodyj4 & Set : F

and the left Kan extension/precomposition adjunction induced by % — BA°P x
BA
(o,0) : [BA°P x BA, Set] & [*,Set] : (o, @),

are both monadic, and the monads are equivalent. Therefore the categories are
equivalent. Under this equivalence, the A|A-bimodule A is taken to Hompg 4, so
the equivalence from the previous section factors through the bimodule centre
(the third line).

3 Morita invariance

You can also get morita invariance of the centre from the perspective of ends.
Because [BA, Set] is the category of left A-modules (again, one can use monadic-
ity), we have

HBA, Set]a [BA7 Set]](ld[BA,Sct]a Id[BA,Sct])
VBA%, 1B A% [BA, Set]](ypa0m, Y aor)

_\b
L [BA°P x BA, Set|(Hompa,Hompg4),

this final set being the bimodule centre.
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