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Chapter 0

Introduction

Any student of linear algebra will be familiar with the Cayley-Hamilton
theorem: every matrix satisfies its own characteristic polynomial. When
applied to the matrix algebra F [A], defined to be the linear span of all powers
of A ∈Mn(F ), this theorem tells us that only the matrices I, A,A2, . . . , An−1

are required to span F [A]. That is, F [A] has dimension bounded above by
n. One might therefore extrapolate that for F [A,B] defined to be the linear
span of all products of powers of A,B ∈ Mn(F ), the dimension of F [A,B]
can go as high as n2. However, in [5] (1961), Gerstenhaber gave a proof
of the counter-intuitive result that for commuting matrices A and B, the
dimension of F [A,B] will never exceed n. This result has come to be known
as Gerstenhaber’s Theorem, despite the fact that, as noted in [6], that the
theorem is ‘an immediate corollary to an old result of Motzkin and Taussky’.

Gerstenhaber’s result integrates the fields of matrix theory and algebraic
geometry, as his proof utilises the irreducibility of commuting pairs of n×n
matrices, denoted C(2, n). In his paper, Gerstenhaber posed the question
of whether similar sets of commuting k-tuples of n × n matrices, denoted
C(k, n), are also irreducible. For most values of k and n this problem has
been resolved, but some cases remain open as of 2022.

Several advances related to this problem have used the properties of the
Weyr canonical form, a little-known canonical form dual to Jordan nor-
mal form. The original discovery of the Weyr form is credited to Czech
mathematician Eduard Weyr, first appearing in the paper [27] (1885). The
better-known Jordan normal form was, as alleged in [8], first discovered by
Weierstrass in 1868 two years before Jordan’s discovery of the form. Accord-
ing to [22, p95], Jordan normal form did not become the ‘canonical matrix
form of choice until the 1930s’. Regardless, awareness of the Weyr form
has somewhat vanished: a sentiment perfectly illustrated by the number of
times the canonical form has been rediscovered. The first chapter of this re-
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port provides an introduction to the Weyr canonical form, and discusses the
properties it possesses which are advantageous for its use in commutative
matrix algebra problems. The most crucial of these properties is the form
of the centraliser of a Weyr matrix, that is, the deduction that matrices
commuting with a Weyr matrix have a special block upper-triangular form.
The first mention of this property appears to be in [23] (2005), where the
Weyr form was reinvented as the ‘H-form’. The first chapter will also cover
the duality theorem relating the Jordan and Weyr forms of a matrix, as
well as their characteristics. The permutation used to relate the canonical
forms was known to Belitskii in [2] (first published in Russian in 1983), who
re-derived the Weyr form as a ‘modified normal form’, though the duality
of the structures associated to the canonical forms does not appear until
Shapiro’s paper [25] (1999) on the Weyr characteristic, known as the Weyr
structure in this report and other literature. This paper is credited in [22,
p81] with establishing the name of the canonical form used currently.

The second chapter compiles a number of results arising from problems
on bounding the dimension of a matrix algebra. Whilst algebras generated
by two commuting matrices have dimension bounded above my matrix size,
algebras generated by four commuting matrices are known to violate this
bound and even greater bounds according to Bergman’s paper [3] (2013),
whose construction will be examined in the second chapter. Whether all ma-
trix algebras generated by a commuting triple of matrices have dimension
bounded above by matrix size is an open problem known as Gerstenhaber’s
problem. Such commuting triples are believed to exist, and much justifi-
cation for this belief is presented across the papers [9] and [24] through
connections with analogous problems related to commutative rings, and in-
abilities for current methods of proof of Gerstenhaber’s theorem to extend
to a three-matrix analogue. Though no such commuting triples are known,
a computing strategy which exploits the properties of Weyr matrices has
been developed to search for them. The second chapter closes with an ex-
planation of why Weyr matrices are desirable for this purpose, as well as
an outline of the algorithm used, and an example of a triple generated and
checked by the algorithm.

In the final chapter, we investigate the ties binding problems on the
dimension of a matrix algebra and problems in algebraic geometry. Our
knowledge of which matrix sizes n may admit triples generating an alge-
bra of dimension exceeding n is connected with the reducibility of C(3, n).
This set admits the structure of an affine variety, meaning it can be iden-
tified with a set of points at which some collection of polynomials vanishes.
We develop the necessary results from algebraic geometry required for an
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assessment of these matrix variety problems. (Ir)reducibility of C(k, n) is
established in the report for all but 24 cases, 18 of which are still unsolved.
To do this we rely on only four theorems. The first is the result of Motzkin
and Taussky mentioned earlier, which proves irreducibility of C(2, n). The
second establishes reducibility of C(k, n) for k, n ≥ 4 through a simple ar-
gument using the previously mentioned matrix algebra connection, that is,
we are quite easily able to find four matrices of any size greater than four
that generate an algebra of dimension exceeding matrix size. The third is
Guralnick’s theorem on the reducibility of C(3, n) for n ≥ 29, originally ap-
pearing in [6]. The proof of Guralnick’s theorem has been built upon by
multiple authors, and although at inception only cases n ≥ 32 were cov-
ered, the proof can be adjusted as in [22] to use Weyr matrices, allowing
us to cover the additional cases of n = 29, 30, 31. We explore the details
of these adjustments in the fourth section of the third chapter. The final
theorem covers only the case of C(3, 4). The reason for including this case
in particular, as well as it being the only other case which holds for C(3, 4)
over fields of arbitrary characteristic, is that after some examination, one
realises that the methods for proving irreducibility of C(3, 4) build upon the
methods used to prove irreducibility of C(2, n) in a rather natural way, both
requiring a proof that some set of k-regular matrices is dense in the variety.

The remaining known cases do receive a brief mention, as they are all
individually proven through a different problem connected to matrix vari-
eties - the approximate simultaneous diagonalisation problem. In fact, the
paper [1] highlighting the connection between approximately simultaneously
diagonalisable matrices and invariants of evolutionary models in biology was
the initial motivator for several of the mathematicians currently researching
these matrix variety problems.

In short, the ultimate aim of this report is to illustrate the link between
problems concerning the dimension of a matrix algebra and problems con-
cerning the reducibility of a matrix variety. En route, Weyr matrices will
make frequent appearances, demonstrating the applicability of their use for
research in these areas.
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Chapter 1

The Weyr Form

A linear transformation on an n-dimensional vector space over a field F
can be represented with respect to a given basis as an element of Mn(F ).
A fundamental equivalence relation on square matrices is that of similar-
ity, where matrices A,B ∈ Mn(F ) are similar if there exists P ∈ GLn(F )
with A = P−1BP , that is, if they represent the same linear transformation
with respect to different bases. Similarity preserves a multitude of proper-
ties of a matrix, such as determinant, eigenvalues and trace, so it stands
to reason that one might want to find an exemplary representative for an
equivalence class of matrices under similarity, and ideally a representative
for which ‘questions about any standard invariant relative to similarity can
be immediately answered’ [22, p36]. One can think of a canonical form
as a convenient subset S of Mn(F ) such that every matrix is similar to a
unique matrix in S. Jordan normal form is a well-known canonical form,
and another, also with a multitude of applications, is called the Weyr form.

We dedicate the first section of this chapter to the definition of Weyr
matrices. The distinguishing characteristics of Weyr matrices are described
in the second section, where we focus primarily the block shifting effect that
multiplication by a Weyr matrix has on a blocked matrix. This in turn gives
rise to a practical description of the matrices that commute with a Weyr
matrix. We proceed to establish the fact that Weyr matrices describe a
canonical form in the third section. The chapter concludes by establishing
duality of the Jordan and Weyr canonical forms. We mostly use results from
Chapters 1, 2 and 3 of [22].

1.1 Weyr Matrices

Let n, k ∈ N. Then a tuple (n1, . . . , nk) such that n = n1 + · · · + nk and
n1 ≥ · · · ≥ nk is called a partition of n. Throughout the report we will be
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considering n × m matrices grouped into submatrices based on partitions
of n and m. These will be referred to as blocked matrices (called block
matrices in some texts). Grouping the entries in this way allows us to
perform matrix multiplications in terms of the submatrices. In order for
matrix multiplication to behave in this coherent way, the blocking of the
matrices must be conformable [4, Definition 1.9.5]: if we want to multiply
A ∈ Ma×n and B ∈ Mn×b, then the partitions of n used for A and B must
be equal. Since we will mainly be considering commuting square matrices,
and therefore wish to be able to multiply them in either order, we always
block square matrices according to the same partition both vertically and
horizontally.

Example 1.1.1. We perform matrix multiplication in the standard way
below.

0 0 0 3 6
0 0 0 7 0
0 0 0 1 0
1 0 0 2 5
0 1 0 0 1



2 5 1 0 0
8 −9 7 0 0
3 1 5 0 0
0 0 1 9 0
0 0 −1 0 7

 =


0 0 −3 27 42
0 0 7 63 0
0 0 1 9 0
2 5 −2 18 35
8 −9 6 0 7


Alternatively, we can block the matrices according to the partition (3, 2).

Any blocks which are not displayed can be assumed to contain only zeros.

(
A

B C

)
:=


3 6
7 0
1 0

1 0 0 2 5
0 1 0 0 1

 ,

(
D
E F

)
:=


2 5 1
8 −9 7
3 1 5
0 0 1 9 0
0 0 −1 0 7


Then to obtain the answer, we can multiply the matrices in terms of

their blocks as below.(
A

B C

)(
D
E F

)
=

(
AE AF

BD + CE CF

)
We multiply the individual submatrices to obtain

AE =

0 0 −3
0 0 7
0 0 1

 , AF =

27 42
63 0
9 0

 , BD =

(
2 5 1
8 −9 7

)
,

CE =

(
0 0 −3
0 0 −1

)
, CF =

(
18 35
0 7

)
,

and placing these into the matrix above gives the expected answer.
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We also often consider block-diagonal matrices, where all blocks except
those on the diagonal are zero. If A and B are square matrices, then we
define the direct sum of A and B to be the block-diagonal matrix

A⊕B :=

(
A

B

)
.

If we want to take the direct sum of several matrices A1, . . . , As, then we
use the notation

s⊕
i=1

Ai :=

A1

. . .

As

 .

Similarly block upper-triangular matrices will make an appearance. These
are blocked matrices where all of the blocks below the diagonal are zero ma-
trices.

We first introduce perhaps the most well-known of the canonical forms:
Jordan normal form. If F is an algebraically closed field, then every square
matrix with entries in F is similar to a unique Jordan matrix.

Definition 1.1.2 ([22, p38]). Let F be a field and λ ∈ F . A Jordan block
of size n with eigenvalue λ is an n× n matrix with

• λ on the diagonal,

• 1 on the superdiagonal, and

• 0 elsewhere.

A Jordan matrix is a direct sum of Jordan blocks, where (by convention)
blocks of the same eigenvalue are direct-summed in descending size order.

Given a Jordan matrix J , if m1 ≥ n2 ≥ · · · ≥ ml are the sizes of the
Jordan blocks of J with eigenvalue λ, we define the Jordan structure of J
associated to λ to be the tuple (m1, . . . ,ml).

We call upon the reader to observe the parallels between the definition
of the Jordan block and that of the Weyr block.

Definition 1.1.3 ([22, Definition 2.1.1]). Let F be a field and λ ∈ F . Let
n be a positive integer and (n1, . . . , ns) a partition of n. The Weyr block
with eigenvalue λ and Weyr structure (n1, . . . , ns) is the n × n matrix W
blocked according to the partition (n1, . . . , ns) such that

• each diagonal block Wii is equal to λI where I is the ni × ni identity
matrix,
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• each superdiagonal block W(i,i+1) is the ni×ni+1 matrix of full column
rank in row-reduced echelon form, known as a generalised identity
matrix, and

• all other entries are zero.

Example 1.1.4. Below are the 8 × 8 Weyr blocks with eigenvalue 2 and
Weyr structures (4, 2, 2) and (3, 3, 1, 1) respectively. Notice that a gener-
alised identity matrix is just an identity matrix with zero rows added to the
bottom.

2 0 0 0 1 0
0 2 0 0 0 1
0 0 2 0 0 0
0 0 0 2 0 0

2 0 1 0
0 2 0 1

2 0
0 2


,



2 0 0 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1

2 0 0 1
0 2 0 0
0 0 2 0

2 1
2


.

Definition 1.1.5. A Weyr matrix is a direct sum of Weyr blocks with
distinct1 eigenvalues.

A nilpotent matrix A is a matrix such that An = 0 for some n ∈ N.
Nilpotent matrices may only have eigenvalue 0, since if some nilpotent ma-
trix A has a nonzero eigenvalue λ ∈ F with corresponding (also nonzero)
eigenvector v, then we have

0 = 0v = Anv = λnv ̸= 0,

which is a contradiction. Thus in the world of the Weyr form, a nilpotent
Weyr matrix is a Weyr matrix with single eigenvalue 0, so is a Weyr block.
For the problems we will consider, there exist some standard techniques
which allow us to prove a statement about general matrices by considering
only nilpotent matrices. We make frequent use of the following theorem, the
details of which are are outlined in [22, Section 1.5].

Theorem 1.1.6 (Reduction to the Nilpotent Case, [22, Corollary 1.5.4]).
Let F be an algebraically closed field and A ∈Mn(F ). Let λ1, . . . , λk be the
eigenvalues of A with corresponding algebraic multiplicities ni. Then there
exist nilpotent matrices Ni ∈Mni(F ) such that A is similar to (λ1I +N1)⊕
· · · ⊕ (λkI +Nk).

1This condition is necessary for the uniqueness result to hold. We will be in a position
to further examine this after proving duality of the Jordan and Weyr forms.
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1.2 The Centraliser of a Weyr Matrix

Later chapters will include applications of Weyr matrices, and most of these
rely on one of two properties of the matrices. These are the basis and block
shifting effects, giving rise to the form of the centraliser of a nilpotent Weyr
matrix. This first remark follows [22, Theorem 2.4.1].

Remark 1.2.1. Let W be a nilpotent n×n Weyr matrix of Weyr structure
(n1, . . . , ns). Consider the standard basis vectors e1, . . . , en. The first n1

columns of W contain only zeros, so Wei = 0 for 1 ≤ i ≤ n1. Considering
the following n2 columns, that is, columns n1 + 1 ≤ i ≤ n1 + n2, the
ith column has a 1 in the n1 + ith position and zeros elsewhere. Hence
Wen1+i = ei for 1 ≤ i ≤ n2. The general pattern is as follows: if we split
the standard basis B into bases B1, . . . ,Bk with the first n1 basis vectors
in B1, the next n2 basis vectors in B2, and so forth, then multiplication by
W kills2 the elements of B1 and sends the elements of Bi+1 to Bi, whilst
preserving their order.

Example 1.2.2. The diagram below represents the action of multiplication
by the nilpotent Weyr block of Weyr structure (6, 5, 3, 2, 2) on the standard
basis e1, . . . , e18. Similar diagrams are used in [22, p39, p46-47].

B1 B2 B3 B4 B5
0← e1 ← e7 ←e12 ←e15 ←e17

0← e2 ← e8 ←e13 ←e16 ←e18

0← e3 ← e9 ←e14

0← e4 ←e10

0← e5 ←e11

0← e6

Note that the first column contains n1 = 6 elements, the second contains
n2 = 5, the third contains n3 = 3 and so on.

Similar is the block shifting effect that a nilpotent Weyr blockW has on a
matrix blocked according to the same partition as W . Because a Weyr block
is like a Jordan block with 1’s replaced with generalised identity matrices,
we will first investigate the effect of multiplying by both Jordan blocks and
generalised identity matrices.

2It should be noted that the phrase ‘A kills b’ is shorthand for ‘A sends b to zero’.
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Consider
(
I
0

)
, the generalised identity matrix of size m × n for m ≥ n.

We have(
I
0

)
A =

(
IA
0A

)
=

(
A
0

)
,

(
B C

)(I
0

)
= BI + C0 = B,

for A ∈ Mn×l(F ), B ∈ Ml×n(F ) and C ∈ Ml×(m−n)(F ). That is, left mul-
tiplication adds (m − n) zero rows to the bottom of a matrix, and right
multiplication removes the rightmost (m− n) columns of a matrix.

An n× n Jordan block J has entries Jij = δi+1,j , where

δij =

{
1 if i = j,

0 otherwise.

Hence the matrix product formula shows that if A is a matrix with which
multiplication by J is compatible, then

(JA)ij =
n∑

k=1

δi+1,kAkj = Ai+1,j ,

so left multiplication shifts elements upwards. Similarly

(AJ)ij =
n∑

k=1

Aikδk+1,j = Ai,j−1,

so right multiplication shifts elements to the right.
Combining these two effects allows us to observe the effect of left/right

multiplication by a nilpotent Weyr block, like in [22, Example 2.3.2].

Example 1.2.3. Let W be the nilpotent Weyr block of Weyr structure
(3, 2, 1). Left multiplication by W shifts blocks upwards and adds zero rows
to each block as one can observe below.

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

0 0 1
0 0 0

0





1 7 13 19 25 31
2 8 14 20 26 32
3 9 15 21 27 33
4 10 16 22 28 34
5 11 17 23 29 35
6 12 18 24 30 36

 =



4 10 16 22 28 34
5 11 17 23 29 35
0 0 0 0 0 0
6 12 18 24 30 36
0 0 0 0 0 0
0 0 0 0 0 0


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Right multiplication by W shifts blocks to the right and removes the right-
most columns from each block.

1 7 13 19 25 31
2 8 14 20 26 32
3 9 15 21 27 33
4 10 16 22 28 34
5 11 17 23 29 35
6 12 18 24 30 36





0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

0 0 1
0 0 0

0

 =



0 0 0 1 7 19
0 0 0 2 8 20
0 0 0 3 9 21
0 0 0 4 10 22
0 0 0 5 11 23
0 0 0 6 12 24


Given these shifting effects, we can determine when a matrix commutes

with a nilpotent Weyr block, or in other words, is contained in the centraliser
of the Weyr block.

Definition 1.2.4 ([22, p96]). Let A ∈ Mn(F ). Then the centraliser of A,
denoted C(A), is the set of matrices that commute with A.

A matrix commutes with a Weyr block exactly when shifting blocks
upwards and adding zero rows coincides with shifting blocks rightwards and
removing columns, as is encapsulated by the following theorem.

Theorem 1.2.5 ([22, Theorem 3.2.1]). Let W be a nilpotent Weyr block,
and let K be a matrix blocked according to the same partition as W , the
(i, j)th block of which is denoted Kij. Then K ∈ C(W ) exactly when

Kij =

(
Ki+1,j+1 ∗

0 ∗

)
,

where ∗ denotes that the entries of the block may be freely chosen.

Note that K ∈ C(W ) must be block upper-triangular. Comparison of
the first column of blocks of the resulting matrices given by upward and
rightward shifting gives us the equality Ki,1 = 0 for i > 1 (compare with
Example 1.2.3). The block Ki,j for i > j is contained in the top corner of
the zero block Ki−(j−1),1, so is itself zero.

Remark 1.2.6. One may wonder how many free choices3 we have for the
entries of a matrix K ∈ C(W ). This is answered in [22, Proposition 3.2.2] by
ascending from the blocks in the lowest row to the blocks at the top. The
bottom row has all blocks zero except the ns × ns block on the far-right,
the entries of which can be freely chosen. The row above has all blocks zero
except the ns−1×ns−1 block and the ns−1×ns block. The first ns columns
of the ns−1 × ns−1 block are fixed, as the first ns rows depend on Kss, and
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the remaining entries are zero. Thus we have n2
s−1− ns−1ns choices for this

block, and ns−1ns choices for the block on the right. Thus we have n2
s−1+n2

s

choices so far. This pattern continues: we have n2
i + · · ·+ n2

s free choices in
rows i, i+ 1, . . . , s, so we have n2

1 + · · ·+ n2
s free choices in total.

One consequence of the following lemma is that matrices commuting
with a Weyr matrix W1⊕· · ·⊕Ws are those of the form K1⊕· · ·⊕Ks where
each Ki commutes with Wi.

Lemma 1.2.7 ([22, Proposition 3.1.1]). If A is of the form

s⊕
i=1

(λiI +Ni),

where Ni ∈Mni(F ) is nilpotent, then matrices that commute with A are also
of this form, that is, they have the same block-diagonal structure (but may
have different eigenvalues and nilpotent parts).

1.3 Existence and Uniqueness of the Weyr Form

The two essential criteria on the canonical form checklist are that every
square matrix is similar to some matrix in the canonical form, and that this
matrix is unique (at least, up to some trivial equivalence). In this section, we
show that Weyr matrices describe a canonical form for matrices in Mn(F ),
with F algebraically closed. Thanks to Theorem 1.1.6, it suffices to show
that every nilpotent matrix is similar to a Weyr block. Proving this requires
the following tool.

Lemma 1.3.1 ([22, Lemma 2.2.1, (3)]). If the first d columns of a matrix
A are zero, then any elementary row operation that modifies only the first d
rows of A can be realised as a conjugation by the corresponding elementary
matrix.

Proof. Let E be a matrix such that left multiplication by E is an elementary
row operation. Then right multiplication by E−1 performs the inverse of
the corresponding column operation. Since the first d columns of A are
zero, right multiplication by E−1 has no effect. That is, EAE−1 = EA as
required.

3This corresponds to the dimension of C(W ) as an algebra over F : see Chapter 2
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The proof of the following theorem proceeds by induction in a way that
warrants more explanation than is granted at source in [22, Theorem 2.2.2].
In order to provide this, we describe an iterative process by which we can
find a strictly4 block upper-triangular matrix similar to a nilpotent matrix
N .

Let N be a nilpotent matrix of size n > 1. We first claim that N has
nonzero nullity. If N is the zero matrix then its nullity is equal to the matrix
size, and if N is nonzero then there exists some r with N r ̸= 0 but N r+1 = 0.
Thus there exists v ∈ Fn with N rv ̸= 0. This means N(N rv) = N r+1v = 0,
hence the nullity of N is at least 1.

Now we outline the process. Let N1 be a nilpotent matrix of nullity n1.
Let B be an ordered basis of Fn such that the first n1 vectors in B form
a basis for the kernel of N1. If P1 is the matrix which changes from the
standard basis to B, then provided N1 is not the zero matrix, the matrix
P−1
1 N1P1 is of the form

since N1 kills the first n1 vectors in B. The nth power of the above matrix
is zero by nilpotency of N1, and has Nn

2 as its bottom right corner entry, so
N2 is itself a nilpotent matrix. By similar arguments as before, there exists
an invertible matrix P2 such that conjugation of P−1

1 N1P1 by the matrix
I ⊕ P2 gives a matrix of the form5

where the matrix N3 is nilpotent of strictly smaller size than N2.
At each step, we find a nilpotent matrix Ni+1 of strictly smaller size

than Ni. Since our original matrix is of finite size, at some point the process
terminates i.e. we reach a matrix Ns equal to the zero matrix, so all diagonal
blocks of the resulting matrix are zero. The following proof proceeds by
induction on the number of steps that this process requires for a given
nilpotent matrix.

4By strictly block upper-triangular we mean that the diagonal blocks are zero matrices.
5In moving from the 2× 2 blocked matrix to the 3× 3 blocked matrix below, we abuse

notation in that we have split X12 into the matrices X12 and X13
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Theorem 1.3.2 ([22, Theorem 2.2.2]). Let F be a field and N ∈ Mn(F )
nilpotent. Then there exists a Weyr block similar to N .

Proof. Assume that the matrix size n is greater than 1, since a nilpotent
matrix of size 1 is just the zero matrix. If the process requires zero steps,
then N must have been the zero matrix, which is the nilpotent Weyr block
of Weyr structure (n), acting as our base case. Assume for the inductive
step that if the process requires s − 2 steps, then N is similar to a Weyr
block with (s−1) parts in its Weyr structure. Now suppose that the process
requires s− 1 steps for N . Let N have nullity n1. Then N is similar to the
matrix

,

where N ′ is a nilpotent matrix for which the process requires s − 2 steps.
By the inductive hypothesis, N ′ is similar to a nilpotent Weyr block W . Let
(n2, . . . , ns) be its Weyr structure. Then N is similar to the matrix

.

Using row operations to cancel the matrices X13, . . . , X1s requires modifying
only the first n1 rows, and since the first n1 columns are zero, Lemma 1.3.1
tells us this can be done through conjugation by elementary matrices. Hence
N is similar to the matrix

.
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Notice that X12 is an n1×n2 matrix. By the rank-nullity theorem, we have

n = n1 + rankX12 + rank I3 + · · ·+ rank Is

= n1 + rankX12 + n3 + · · ·+ ns,

so rankX12 = n2, meaning X12 is a matrix of full column rank. Therefore
there exist elementary row operations modifying only the first n1 rows which
place X12 in row-reduced echelon form, and again using Lemma 1.3.1, N is
similar to the matrix

which is the nilpotent Weyr block of Weyr structure (n1, n2, . . . , ns).

The following result appears at the beginning of [22, Theorem 2.2.2].

Corollary 1.3.3 (Existence of Weyr Form). Let F be an algebraically closed
field. Then every A ∈Mn(F ) is similar to a Weyr matrix.

Proof. By Theorem 1.1.6, a matrix A with entries in an algebraically closed
field is similar to some matrix

⊕k
i=1(λiI + Ni) with all λi distinct and Ni

nilpotent. By the previous theorem, there exist invertible Pi such that each
P−1
i NiPi is a nilpotent Weyr block Wi, so

k⊕
i=1

(P−1
i )

k⊕
i=1

(λiI +Ni)

k⊕
i=1

(Pi) =

k⊕
i=1

(λiI +Wi),

which conforms to the definition of a Weyr matrix.

The proof of Theorem 1.3.2 establishes that the nullity of N is the first
component of the Weyr structure of the corresponding Weyr block. This is
integral to our uniqueness result.

Proposition 1.3.4 ([22, Proposition 2.2.3]). If W is a Weyr block with
eigenvalue λ and Weyr structure (n1, . . . , ns), then

14



1. s is the nilpotent index of W − λI i.e. the smallest positive integer s
such that (W − λI)s = 0,

2. n1 = nullity(W − λI), and

3. ni = nullity(W − λI)i − nullity(W − λI)i−1.

Proof. Statement (2) follows from the proof of Theorem 1.3.2. Statements
(1) and (3) are consequences of the block shifting effect from Section 1.2, as
the first n1+ · · ·+ni columns of the matrix (W −λI)i are zero and the rest
are linearly independent.

The Weyr structure of a Weyr block is determined by the nullities of its
powers: values which are invariant with respect to similarity, giving us our
uniqueness result.

Corollary 1.3.5 (Uniqueness of Weyr Form, [22, Theorem 2.2.4]). All sim-
ilar Weyr matrices are equal up to permutation of their Weyr blocks.

The following definition is integrated into the result [22, Theorem 2.2.4].

Definition 1.3.6. Let A ∈Mn(F ) for F an algebraically closed field. Then
the Weyr form of A is the unique (up to permutation of Weyr blocks) Weyr
matrix W similar to A . The Weyr structure of A is defined to be the Weyr
structure of W .

1.4 Duality of Jordan and Weyr Matrices

The similarity of the Jordan and Weyr forms extends past the appearance of
their definitions. Indeed there is a duality to the Jordan and Weyr structures
of similar Jordan and Weyr matrices.

Definition 1.4.1 ([5, p327]). Let N = (n1, . . . , ns) be a partition of n.
Define the setMi = {j ∈ N : nj ≥ i}, and letmi = |Mi|, equal to the number
of parts ofN of size i or greater. Let l be the largest integer such thatml ̸= 0.
ThenM = (m1, . . . ,ml) is the dual partition to N .

From this definition, it is not immediately obvious thatM should be a
partition of n. Instead, the way this concept is often framed is in terms of
Young diagrams. These are diagrams representing a partition (n1, . . . , ns)
of n, consisting of s rows of squares, the ith row containing ni squares.
Consider Figure 1.1, which represents the partition (5, 3, 2, 1) of 11. The
dual partition is (4, 3, 2, 1, 1). One can see that the ith part of the dual
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partition, mi, is the number of squares in the ith column, whence the dual
partition is also a partition of 11. Furthermore, this approach makes it clear
that the dual of the dual of a partition is the original partition.

Figure 1.1: The Young diagram representing the partition (5, 3, 2, 1) of 11.

Theorem 1.4.2 (Jordan-Weyr Duality, [22, Theorem 2.4.1]). Let A ∈
Mn(F ) have Jordan structure M = (m1, . . . ,ml) associated to an eigen-
value λ. Then the Weyr structure of A associated to λ is the dual partition
toM.

Proof. Let J be a nilpotent Jordan matrix of Jordan structure (m1, . . . ,ml).
Split the standard basis into sets B1, . . . ,Bl where B1 contains the first m1

vectors, B2 contains the next m2, and so forth. Multiplication by J kills
the first vector of each Bi, and sends the (j + 1)th vector of Bi to the jth.
Alternatively, given the dual partition (n1, . . . , ns) to M, we can split the

standard basis into sets B′1, . . . ,B′s with
∣∣∣B′j∣∣∣ = nj such that B′j contains

the jth vector of each Bi. Then multiplication by J kills the elements of
B′1 and sends the elements of B′j+1 to B′j . This is exactly the action of the
Weyr block W with Weyr structure (n1, . . . , ns) on the standard basis, so J
and W represent the same linear transformation and are therefore similar
matrices.

The following example illustrates the same ideas as [22, Example .4.4]

Example 1.4.3. Consider the nilpotent Weyr block W of Weyr structure
(4, 2, 2). By Jordan-Weyr duality, the Jordan matrix J similar to W has
Jordan structure (3, 3, 1, 1). The matrix W acts on the standard basis as
below, where arrows represent multiplication by W .

B′1 B′2 B′3
0← e1 ← e5 ← e7 B1
0← e2 ← e6 ← e8 B2
0← e3 B3
0← e4 B4
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When the basis is ordered from top to bottom as above, the matrix repre-
sentation of this linear transformation is W , but when reordered from left
to right, the transformation is represented by J . Therefore the change of
basis required to send W to J is

e1 7→ e1, e2 7→ e5, e3 7→ e7, e4 7→ e2,

e5 7→ e6, e6 7→ e8, e7 7→ e3, e8 7→ e4,

so our change of basis matrix is given by P below, and conjugation by P
gives us the rightmost matrix

P =



1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0


, P−1WP =



0 1 0
0 0 1
0 0 0

0 1 0
0 0 1
0 0 0

0
0


,

which, as predicted, is the Jordan matrix of Jordan structure (3, 3, 1, 1).

We are now in a position to consider the requirement of distinctness of
eigenvalues in the definition of the Weyr matrix. Discarding this requirement
would violate our uniqueness result, in that given Weyr blocks W1, . . . ,Ws

with the same eigenvalue, there exists a single Weyr block W similar to
W1 ⊕ · · · ⊕Ws. However, there is more that we can say about the Weyr
structure of W in terms of the structures of the Wi. This result as it relates
to Weyr matrices was not found in the literature, but is a direct consequence
of [5, Proposition 6] framed in terms of our particular canonical forms. Its
usage in our scenario arose from a group session, during a discussion of the
distinct eigenvalue condition.

Lemma 1.4.4. Let W1,W2 be Weyr blocks of eigenvalue λ and Weyr struc-
tures (n1, . . . , ns) and (m1, . . . ,ml) respectively, and assume s ≥ l. Then
W1 ⊕W2 has Weyr structure (n1 +m1, . . . , nl +ml, nl+1, . . . , ns).

Proof. There exist Jordan blocks J1, J2 and invertible matrices P1, P2 such
that Wi = P−1

i JiPi. Therefore

W1 ⊕W2 = (P1 ⊕ P2)
−1(J1 ⊕ J2)(P1 ⊕ P2),

so the Jordan normal form of W1 ⊕W2 is J1 ⊕ J2. Suppose J1 and J2 have
respective Jordan structures (a1, . . . , ar) and (b1, . . . , bt), the dual partitions

17



to the Weyr structures of W1 and W2. Then by definition, the Jordan
structure of J1 ⊕ J2 is the tuple

(a1, . . . , ar, b1, . . . , bt)

but with the parts sorted in order from greatest to least. Then by Jordan-
Weyr duality, the Weyr structure of this matrix is the dual of this partition,
which is exactly the tuple given in the statement of the lemma; a fact which
can be seen using Young diagrams, but for the unsatisfied, is also the content
of [5, Proposition 6].

Example 1.4.5. Consider the nilpotent Weyr blocks W1,W2 of Weyr struc-
tures (2, 1) and (1, 1, 1) respectively.

W1 =

 0 0 1
0 0 0

0

 , W2 =

 0 1
0 1

0

 ,

By Lemma 1.4.4, we expect W1⊕W2 to have Weyr structure (2+ 1, 1+
1, 1) = (3, 2, 1). By Jordan-Weyr duality, W1 and W2 are similar to Jordan
matrices J1, J2 of Jordan structures (2, 1) and (3) respectively.

J1 =

 0 1
0 0

0

 , J2 =

 0 1 0
0 0 1
0 0 0

 ,

Hence W1⊕W2 is similar to J1⊕ J2, which after permutation of Jordan
blocks, can be seen to have Jordan structure (3, 2, 1).

J1 ⊕ J2 =



0 1
0 0

0
0 1 0
0 0 1
0 0 0

 ∼=


0 1 0
0 0 1
0 0 0

0 1
0 0

0

 .

This has dual partition (3, 2, 1), so W1 ⊕W2 is similar to the Weyr block
of Weyr structure 

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

0 0 1
0 0 0

0

 .
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Chapter 2

Bounding the Dimension of a
Matrix Algebra

A matrix algebra is an object that can be thought of as a subring of Mn(F )
with the additional structure of a vector space, meaning we can define its
dimension as a vector space over F . If an algebra is generated by commuting
matrices, then we can derive some results about its dimension, also giving
rise to a 60 year old open problem central to our report: Gerstenhaber’s
problem.

The first section establishes the definition of an algebra in abstract terms
disconnected from matrices, and introduces essential notions such as alge-
bra homomorphisms and the direct product of algebras, before centering on
matrix algebras and the language and notation we use for them specifically.
Gerstenhaber’s theorem on the dimension of a 2-generated commutative ma-
trix algebra is covered in the second section, along with a slew of examples
demonstrating that such bounds do not hold for n × n matrices in the k-
generated case, n, k ≥ 4. A recent computational attempt to disprove the
three matrix analogue of Gerstenhaber’s theorem uses Weyr matrices, and
is outlined in the third section.

2.1 Matrix Algebras

Our development of algebras follows [14, Chapter 7].

Definition 2.1.1 ([14, Definition 1]). An (associative) algebra A over a
field F is a pair consisting of a ring (A,+, ·, 0, 1) and a vector space A over
F such that the underlying set A, the addition, and the zero element are
the same in the ring and the vector space, and

a(xy) = (ax)y = x(ay)
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holds for all a ∈ F, x, y ∈ A.

In this report, we assume the multiplication in all algebras to be commu-
tative unless otherwise stated1. In [14, p409], a subalgebra of an algebra A
is defined to be a subset of A which is also a subring and a vector subspace
of A. An algebra homomorphism is defined to be a function f : A → B
between algebras A and B which is simultaneously a ring homomorphism
and a linear map, a bijective algebra homomorphism is called an algebra
isomorphism, and if A and B are isomorphic algebras, we denote this by
A ∼= B.

Definition 2.1.2. Let A,B be algebras. Then the direct product of A and
B, denoted A × B, is the algebra consisting of pairs (a, b) with a ∈ A and
b ∈ B, where addition, multiplication and scalar multiplication each occur
component-wise. If we have algebras A1, . . . ,Ak, then we may write

k∏
i=1

Ai := A1 × · · · × Ak.

We say an algebra A splits as a direct product of algebras A1, . . . ,Ak

when A is isomorphic to
∏k

i=1Ai. Then a basis for A is given by a union of

bases of the Ai, so dimA =
∑k

i=1 dimAi.
We focus our attention on matrix algebras, which are subalgebras of

Mn(F ). Let A1, . . . , Ak be commuting n× n matrices. Then F [A1, . . . , Ak]
is defined to be the smallest subalgebra of Mn(F ) containing the matrices
A1, . . . , Ak. Note that the identity matrix is contained in F [A1, . . . , Ak] by
our definition of an algebra. A matrix algebra which is equal to F [A1, . . . , Ak]
for some k is said to be k-generated2.

Below is an example of finding the dimension of a commutative matrix
algebra, which is my own work.

Example 2.1.3. Define

A =


−9 4 0 2
−20 9 0 4
−10 4 1 2
0 0 0 1

 , B =


1 0 −2 −1
5 −1 −5 −3
−5 2 0 1
0 0 0 0

 .

1One notable exception is Mn(F ), which is of course a noncommutative algebra. How-
ever, when we refer to a subalgebra of Mn(F ), we assume the subalgebra is commutative
unless otherwise stated.

2This definition has the peculiar consequence that an algebra containing only scalar
matrices is 0-generated.
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We want to find the dimension of the algebra F [A,B]. We have

AB = BA = C :=


11 −4 −2 −3
25 −9 −5 −7
5 −2 0 −1
0 0 0 0

 .

Now note that A2 = I and B2 = C, so we have AC = CA = BA2 = B
and BC = CB = AB2 = AC = B. Thus {I, A,B,C} spans F [A,B].
Finally, notice that C = I − A + B, so {I, A,B} has the same span. Any
linear combination of I and A has a zero in the (1, 3) position, which is not
the case for B. Thus {I, A,B} is a basis, so dimF [A,B] = 3.

Let A be an algebra containing only matrices of the form A1⊕ · · · ⊕As,
where Ai ∈ Mni(F ). If A contains the matrix with the ni × ni identity
matrix in the ith diagonal block and zero blocks elsewhere, then we say we
can isolate the ith block, as A automatically contains all matrices with Ai in
the ith diagonal block and zero blocks elsewhere. If we can isolate all blocks,
then it follows that A splits as a direct sum of the algebras Ai generated by
the ith blocks of the matrices in A, the isomorphism being

A1 × · · · × As → A,
(A1, . . . , As) 7→ A1 ⊕ · · · ⊕As.

If P ∈ GLn(F ) and we set Bi = P−1AiP , then the algebras

F [A1, . . . , Ak], F [B1, . . . , Bk]

are isomorphic through the isomorphism X 7→ P−1XP . It follows that a set
is a basis of an algebra if and only if its image under conjugation is a basis
of the similar algebra, implying that dimension is a similarity invariant.

2.2 Gerstenhaber’s Theorem and Generalisations

The reader should recognise the following theorem, proven for example in
[16, Theorem 9.7]

Theorem 2.2.1 (Cayley-Hamilton). Let A be a matrix with characteristic
polynomial p. Then p(A) = 0.

The fact that 0 = p(A) = An + an−1A
n−1 + · · · + a1A + a0I for some

ai ∈ F gives us an expression of An as a linear combination of its lower
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powers. Therefore dimF [A] ≤ n, as the set
{
I, A,A2, . . . , An−1

}
always

spans F [A]. Note that this upper bound on the dimension is sharp, since
n× n matrices with n linearly independent powers exist (consider a matrix
which permutes the basis elements according to a permutation of order n).

An interesting 1-generated case is that of 1-regular matrices. If A ∈
Mn(F ), then the eigenspace of A associated to an eigenvalue λ is the kernel
of (A − λI), that is, the subspace of Fn consisting of all eigenvectors of A
with eigenvalue λ.

Definition 2.2.2 ([22, p8]). Let F be an algebraically closed field. A matrix
A ∈ Mn(F ) is k-regular if its eigenspaces have dimension ≤ k. That is, if
nullity(A− λI) ≤ k for all eigenvalues λ of A.

Note that we only consider algebraically closed fields as matrices over
other fields may have eigenvalues not contained in the field.

We will prove as in [22, Proposition 3.2.4] that the only matrices which
commute with a 1-regular matrix A are polynomials in A. At source, the
theorem is proven using the formula for the dimension of the centraliser of a
Jordan matrix. However, after establishing the following lemma, the proof
of which is adapted from [22, Proposition 5.1.1], we can prove the theorem
directly using the form of the centraliser of a Weyr matrix. To prove the
following lemma, we also require the observation that if A ∈Mn(F ) has all
eigenvalues in F , all of which are equal to λ, then p(A) has single eigenvalue
p(λ). To see this, pass to an algebraically closed field and conjugate A into
Weyr form W . Evaluate p(W ) and observe that since W is upper-triangular,
each diagonal entry of p(W ) is p(λ). Thus W has single eigenvalue p(λ),
and since p(W ) = p(P−1AP ) = P−1p(A)P , so does A.

Lemma 2.2.3. Let F be a field and let s be a positive integer. Given
distinct λ1, . . . , λs ∈ F , positive integers n1, . . . , ns, and nilpotent matrices
Ni ∈Mni(F ), the algebra generated by the matrix

A =
s⊕

i=1

(λiI +Ni)

contains all matrices Ii with the ni × ni identity matrix in the ith diagonal
block and zero blocks elsewhere. That is, we can isolate all blocks of A, and
therefore F [A] ∼=

∏s
j=1 F [Nj ].

Proof. Fix i. Denote by pi(X) the characteristic polynomial of λiI + Ni,
which we know to be (X − λi)

ni since λi is the single eigenvalue of this
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ni × ni matrix. Note that pi(λjI + Nj) ̸= 0 has single eigenvalue pi(λj),
which is nonzero as λi ̸= λj . Hence pi(A) is equal to a matrix of the form

s⊕
j=1

(pi(λj)I +N ′
j),

with each N ′
j nilpotent and N ′

i = 0. Note that this matrix has a zero matrix
in the ith diagonal block and is nonzero elsewhere. Hence we can define the
matrix

Bi =
∏
i ̸=j

pj(A),

which is block-diagonal with ith diagonal block of the form

∏
i ̸=j

pj(λiI +Ni) =

∏
i ̸=j

pj(λi)

 I +N ′′
i

for some nilpotent matrix N ′′
i , and the remaining diagonal blocks nonzero.

Let λ denote the single eigenvalue of the ith block of Bi, which as established
is nonzero. Then the Bi has characteristic polynomial (X − λ)ni . Define
qi(X) = 1− 1

(−λ)ni
(X − λ)ni , which has zero constant coefficient. Therefore

qi(Bi) = Ii, that is, we can isolate the ith block for arbitrary i, so F [A]
splits as a direct product of the algebras F [Ni].

Theorem 2.2.4 ([22, Proposition 3.2.4]). If A is 1-regular, then a matrix
B commutes with A if and only if B ∈ F [A]. Moreover, dimF [A] = n.

Proof. It suffices to prove the theorem for the Weyr form of a 1-regular
matrix, and we can further reduce to the case of a 1-regular nilpotent Weyr
block by Lemma 1.2.7. Indeed, by the form of the centraliser of a Weyr
block W ∈Mn(F ), the matrices commuting with a 1-regular W are exactly
the upper-triangular matrices with each diagonal constant. Note that there
are n such diagonals. The matrix W i has 1 along the ith diagonal and
zeros elsewhere, the 0th diagonal being the main diagonal, the 1st being the
superdiagonal, and so forth. Therefore F [W ] spans the space of matrices
with each diagonal constant, which is n-dimensional.

Remark 2.2.5. Matrices which are k-regular will make frequent appear-
ances in the report, as there are simple criteria which allow us to determine
the regularity of Weyr and Jordan matrices. If W is a Weyr matrix, then
the nullity of W − λI is simply the nullity of Wλ − λI, where Wλ is the
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Weyr block of W with eigenvalue λ. The nullity of Wλ − λI is n1: the first
part of the Weyr structure of W associated to λ. Thus a Weyr matrix W
is k-regular exactly when the Weyr structure associated to each eigenvalue
has first part n1 ≤ k. By Jordan-Weyr duality, this means that for a Jordan
matrix to be k-regular, the Jordan structure associated with λ should be of
the form (m1, . . . ,ml) where l ≤ k, so a Jordan matrix is k-regular if there
are at most k Jordan blocks with any given eigenvalue.

It follows from the Cayley-Hamilton theorem that the matrices of the
form Ai1

1 A
i2
2 · · ·A

ik
k span F [A1, . . . , Ak], immediately giving the upper bound

of nk on its dimension. A priori, there is no reason why this bound could
not be attained, but a theorem of Schur shows otherwise.

Theorem 2.2.6 (Schur, [17]). The maximum number of linearly indepen-

dent commuting matrices of size n over a field is
⌊
n2

4

⌋
+ 1.

If we allow an arbitrary number of generators, then this bound is attained
by the matrices I and eij (the matrix with a 1 in the (i, j) position and 0
elsewhere) for 1 ≤ i ≤

⌊
n
2

⌋
and

⌊
n
2

⌋
+1 ≤ j ≤ n. However, if we restrict the

number of generators of the algebra, then we can sometimes obtain better
bounds. Case in point, the following theorem.

Theorem 2.2.7 (Gerstenhaber, [5, Theorem 2]). Let A,B ∈ Mn(F ) be
commuting matrices. Then dimF [A,B] ≤ n.

This theorem admits a proof via purely linear-algebraic methods utilising
the Weyr form, but we opt instead to prove the theorem in the third chapter
using algebraic geometry.

We give our own quick example demonstrating that if we remove the
commutativity requirement from the statement of Gerstenhaber’s theorem,
then the result falls down. For instance, consider the noncommutative alge-
bra generated by the matrices

A =

(
1 2
0 1

)
, B =

(
0 0
1 0

)
.

Then A,B and the identity matrix are linearly independent, so F [A,B] has
dimension exceeding 2.

Similarly if we allow for sufficiently many (four) sufficiently large (4× 4
at the smallest) matrices, the result does not hold. The following example
follows [22, Theorem 6.3.4].

24



Example 2.2.8. By Theorem 2.2.6, we can generate a 5-dimensional matrix
algebra using e13, e14, e23, e24 ∈ M4(F ), which is the highest dimensional
subalgebra of M4(F ) that can be achieved. For any larger matrix size we
still need only four matrices to generate an algebra with dimension exceeding
the matrix size. Consider for instance (4+m)× (4+m) matrices. Let A be
an invertible matrix with m linearly independent powers (for instance, the
permutation matrix corresponding to some m-cycle). Let A be the algebra
generated by the matrices(

e13 0
0 A

)
,

(
e14 0
0 0

)
,

(
e23 0
0 0

)
,

(
e24 0
0 0

)
.

Raising the first matrix to the power 2m gives us3(
e2m13 0
0 A2m

)
=

(
0 0
0 I

)
.

Thus we can isolate the second block, and subtracting this from the identity
allows us to isolate the first block too. Therefore A splits as a direct product
of F [e13, e14, e23, e24] and F [A], the former algebra having dimension 5 and
the latter having dimension m due to the number of linearly independent
powers. Thus the dimension of the generated algebra is 5+m, which exceeds
the matrix size.

A natural question is whether 4-generated matrix algebras violate greater
bounds in terms of the matrix size. The paper [3] provides a method of
constructing an algebra generated by four commuting 4m × 4m matrices
where the dimension of the algebra they generate is 5m, demonstrating
the failure of the bound dimF [A1, A2, A3, A4] <

5
4n for Ai ∈Mn(F ). In the

paper, it is claimed that if A is the algebra generated by an upper-triangular
matrix D + U where D is a diagonal matrix and U is the strictly upper-
triangular part, then D,U ∈ A. This claim admits counterexamples even
in the 2 × 2 case as was discovered during a group meeting: consider the
matrix

A =

(
1 1
0 0

)
,

which is present in M2(F ) with F any field. This is a 1-regular matrix as it
has distinct eigenvalues 0 and 1, and therefore by Theorem 2.2.4, the algebra

3The reason for raising to the power of 2m rather than simply m is for uniformity in
the case m = 1, for which raising to the power of m would not give the desired result.
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F [A] that it generates is equal to its centraliser. But notice that(
1 1
0 0

)(
0 1
0 0

)
=

(
0 1
0 0

)
, whereas

(
0 1
0 0

)(
1 1
0 0

)
=

(
0 0
0 0

)
,

that is, the strictly upper-triangular part does not commute with the matrix,
so cannot be contained in the algebra F [A]. Fortunately the claim still holds
due to Lemma 2.2.3.

Theorem 2.2.9 ([3, Section 3]). For any m ∈ N, there exists a 4-generated
matrix algebra A with dimension exceeding the matrix size by m.

Proof. Let F be a field containing at least m elements. Let e13, e14, e23, e24 ∈
M4(F ) as before. Select distinct λi ∈ F and consider the matrices

E13 =
m⊕
i=1

λiI + e13, E14 =
m⊕
i=1

e14, E23 =
m⊕
i=1

e23, E24 =
m⊕
i=1

e24,

each of size 4m. By Lemma 2.2.3, the algebra A = F [E13, E14, E23, E24]
contains the matrices Ii for 1 ≤ i ≤ m, and since the remaining generating
matrices are block-diagonal with respect to the same partition as E13, A
splits as a direct product of m copies of the algebra F [e13, e14, e23, e24] of
dimension 5. Hence A has dimension 5m which exceeds the matrix size of
4m by m.

One caveat of this method not noted in Bergman’s paper, is that if the
underlying field has fewer than m elements, then Lemma 2.2.3 cannot be
used to isolate each block, so the construction fails.

The following example is my own work, demonstrating Bergman’s con-
struction, as well as the block-isolating process integral to Lemma 2.2.3.

Example 2.2.10. Suppose we want to find complex matrices which generate
an algebra that exceeds the matrix size by 3. Then we can take the four
12× 12 matrices given by

E13 =

I + e13 0 0
0 2I + e13 0
0 0 3I + e13

 , E14 =

e14 0 0
0 e14 0
0 0 e14

 ,

E23 =

e23 0 0
0 e23 0
0 0 e23

 , E24 =

e24 0 0
0 e24 0
0 0 e24

 ,
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where I is the 4× 4 identity matrix. Consider the algebra

A = F [E13, E14, E23, E24].

We give an explicit demonstration of how the third block is isolated.
The characteristic polynomial of I + e13 is p1(X) = (X − 1)4, and the
characteristic polynomial of 2I + e13 is p2(X) = (X − 2)4. We have

p1(E13) =

0 0 0
0 (I + e13)

4 0
0 0 (2I + e13)

4

 =

0 0 0
0 I + 4e13 0
0 0 16I + 32e13

 ,

p2(E13) =

(−I + e13)
4 0 0

0 0 0
0 0 (I + e13)

4

 =

I − 4e13 0 0
0 0 0
0 0 I + 4e13

 ,

so to isolate the third block, we take the product

p1(E13)p2(E13) =

0 0 0
0 0 0
0 0 16I + 96e13

 ,

the third block of which has characteristic polynomial

(X − 16)4 = X4 − 64X3 + 1536X2 − 16384X + 65536.

Therefore if we take

q3(X) =
−1

65536
(X4 − 64X3 + 1536X2 − 16384X)

we find that I3 = q3(p1(E13)p2(E13)). We can perform similar computations
to isolate the blocks I1 and I2, showing that A splits as the direct product∏3

i=1 F [e13, e14, e23, e24], so the algebra has dimension 5 + 5 + 5 = 15, ex-
ceeding the matrix size of 12 by 3 as required.

Gerstenhaber-like results have been seen to fail for 4-tuples of commut-
ing matrices, and by virtue of this, fail for (4 + k)-tuples as well (con-
sider the fact that for a 4-generated counterexample with Ai ∈ Mn(F ),
dimF [A1, A2, A3, A4, 0, . . . , 0] = dimF [A1, A2, A3, A4] ≥ n). This leaves
only the case of triples, which is an open problem.

Problem 2.2.11 (Gerstenhaber’s Problem). For all commuting A,B,C ∈
Mn(F ), is dimF [A,B,C] ≤ n?

The upcoming section focuses on a new strategy for resolving this prob-
lem: hoping for a counterexample.
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2.3 A Computational Strategy

In 2013, Holbrook and O’Meara created a MATLAB program designed to
exploit the properties of Weyr matrices to search for a commuting triple
generating an algebra of dimension exceeding matrix size. The inner work-
ings of the program are described in [10]. We will illustrate the desirable
properties of Weyr matrices which are applied in this scenario.

The authors of [10] make reference to the fact that Gerstenhaber’s Prob-
lem can be reduced to the case of three nilpotent matrices commuting with
a Weyr matrix, and we fill in the details here.

The vector space Mn×m(F ) over F is nm-dimensional, and if we want to
consider elements of Mn×m(F ) as vectors in Fnm, we can use vectorisation
[9, p291], which consists of mapping from a matrix to the vector obtained
by stacking its columns as below

vec

a11 · · · a1m
...

. . .
...

an1 · · · anm

 =



a11
...

an1
...

a1m
...

anm


.

Lemma 2.3.1. Let F be a field and F its algebraic closure. If there ex-
ist commuting A,B,C ∈ Mn(F ) with dimF [A,B,C] > n then there exist
commuting W,K,L ∈ Mm(F ) with W a nilpotent Weyr block such that the
dimension of F [W,K,L] exceeds m.

Proof. Let A,B,C ∈ Mn(F ). Note that dimF [A,B,C] is determined by
the rank of the matrix with columns the vectorisations of AiBjCk, which is
unchanged after passing to F , so dimF [A,B,C] = dimF [A,B,C] > n. We
can place A in Weyr form

W = W1 ⊕ · · · ⊕Wk,

where Wi ∈ Mni(F ), and simultaneously conjugate B,C to some K,L
which have the same block-diagonal structure as W by Lemma 1.2.7. By
Lemma 2.2.3, the algebra F [W,K,L] splits as a direct product of the alge-
bras F [Wi,Ki, Li], where Wi,Ki, Li ∈Mni(F ) and therefore

k∑
i=1

ni = n < dimF [W,K,L] =

k∑
i=1

dimF [Wi,Ki, Li].
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By pigeonholing, there must be some dimF [Wi,Ki, Li] > ni.

What are the benefits of reducing to the case of a nilpotent Weyr block?
Computing the dimension of an algebra is generally a computationally ex-
pensive task. The problem of finding the number of linearly independent ma-
trices of the form AiBjCk is equivalent to finding the rank of the matrix with
columns the vectorisations of the matrices AiBjCk for 0 ≤ i, j, k ≤ n − 1.
This is a matrix of dimension n2×n3. The authors of [10] believe that search-
ing matrices of size 100×100 may be required before counterexamples begin
to reveal themselves, and they remark that searching for a counterexample
here requires computation of the ranks of several 10000× 1000000 matrices.
Using Weyr matrices removes some of this trouble through a dimension for-
mula that depends on the leading edge subspaces of the algebra. The primary
observation here is that a matrix in C(W ) is determined by its top row of
blocks. This means that if W is a nilpotent Weyr block, then given matrices
Xi ∈Mn1×ni(F ) with zeros in the appropriate places, the symbol [X1 · · ·Xs]
uniquely determines the element of C(W ) with top row

(
X1 · · ·Xs

)
.

Definition 2.3.2 ([22, Definition 3.4.1]). Let A be an algebra containing a
nilpotent Weyr block of Weyr structure (n1, . . . , ns). Then for 0 ≤ i ≤ s−1,
we define the ith leading edge subspace associated to A to be the vector
space

Ui = {X ∈Mn1×ni+1(F ) : [

i zeros︷ ︸︸ ︷
0 · · · 0X ∗ · · · ∗] ∈ A},

where ∗ denotes that the entries of the matrix may be freely chosen.

Theorem 2.3.3 (Leading Edge Dimension Formula, [22, Theorem 3.4.3]).
If A is an algebra containing a Weyr block of Weyr structure (n1, . . . , ns),
then

dimA =

s−1∑
i=0

dimUi.

Proof. All elements of A are determined by their top row of blocks. Consider
the linear map πi : Mn(F ) → Mn(F ) given by projecting a matrix blocked
according to the partition (n1, . . . , ns) to the top i× i corner of blocks. That
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is,

πi :


A11 A12 · · · A1s

A21 A22 · · · A2s
...

...
. . .

...
As1 As2 · · · Ass

 7→


A11 · · · A1i 0 · · · 0
...

. . .
...

...
. . .

...
Ai1 · · · Aii 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


.

Define Ai = imπi. Restrict π(s−1) to A. Since A ∈ A is determined by its
top row of blocks, we have A ∈ kerπ(s−1) if and only if A1i = 0 for i ≤ s−1.
Then kerπ(s−1) 7→ A1s is a linear bijection from kerπ(s−1) to U(s−1), so

dimA = dimAs−1 + dimUs−1.

If we restrict π(s−2) to A(s−1), then we get a linear bijection from kerπ(s−2)

to U(s−2), so

dimA = dimAs−2 + dimUs−2 + dimUs−1.

Repeating this process gives

dimA = dimA1 + dimU1 + · · ·+ dimUs−1,

and using the fact that A1 is isomorphic (as a vector space) to U0 gives the
required result.

The remainder of this chapter gives an overview of CommTriplesI (the
routine used to attempt to generate counterexamples), as well as an example
of a single ‘trial’. The example is genuine output from the program, which I
have obtained by stepping through the MATLAB program (the source code
of which was kindly provided by Kevin O’Meara) and recording the matrices
that the program generates. The overview of the code is largely built from
explanations given in [10], and [9].

A simplified overview of the routine CommTriplesI is as follows:

For s1 ≤ seed ≤ s2:
Use seed to generate commuting top corner

blocks K11, L11.

For 2 ≤ k ≤ s:
Attempt to generate K1k, L1k

If generating is impossible then terminate

the loop.

Otherwise, calculate the dimensions of the

leading edge subspaces U0, · · ·Uk−1.
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In the above setting, the user has provided a seed range s1, s2 ∈ N
with s1 < s2, a Weyr structure (n1, . . . , ns) to base generation around,
and a prime p which is used as the characteristic of the field over which
arithmetic takes place, as well as other parameters determining how the
program generates K11 and L11.

Computing the dimension of the leading edge subspace Ui only requires
finding the rank of a matrix whose columns are the vectorisations of the
(1, i+ 1) block of each matrix W iKjLk, which is an n1ni+1 × n3 matrix, as
opposed to the n2×n3 matrix mentioned earlier. The extension of K11, L11

appears more complicated, but boils down to finding solutions to a linear
system. The matrix determining the system arises from using the Kronecker
product to convert the condition that the extended matrices commute into
a linear system.

Definition 2.3.4 ([12, Definition 4.2.1]). Let A ∈Mm×n(F ), B ∈Mp×q(F ).
Then the matrix

A⊗B :=

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


is called the Kronecker product of A and B.

The following Lemma can be proven by unravelling the relevant defini-
tions.

Lemma 2.3.5 ([12, Lemma 4.3.1]). Let A ∈Mm×n(F ), B ∈Mp×q(F ), C ∈
Mm×q(F ) and X ∈ Mn×p(F ). Then AXB = C if and only if (BT ⊗
A) vecX = vecC.

For a fixed Weyr block W of Weyr structure (n1, . . . , ns), denote by
Wi the Weyr block of Weyr structure (n1, . . . , ni). To attempt to extend
K,L ∈ C(Wi−1) to K̃, L̃ ∈ C(Wi), we require that the new blocks K1i, L1i

satisfy the commutation requirement

K1∗L∗i = K11L1i + · · ·+K1iLii = L11K1i + · · ·+ L1iKii = L1∗K∗i,

noting that the matrices Kji, Lji are already known for j > 1 as they are
determined by the top row. If we want to guarantee that K̃, L̃ can be
extended to matrices in C(W ), then we require that the new blocks K1i, L1i

have zeros in specific locations. It follows that K1i, L1i arise as solutions to
the linear system M1 M2

D 0
0 D

(
vecL1i

vecK1i

)
=

vecZ
0
0

 ,
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where

• M1 = Ini ⊗K11 −KT
ii ⊗ In1 and M2 = −(Ini ⊗ L11 − LT

ii ⊗ In1).

• D ∈Mn1ni(F ) is the diagonal matrix such that D vecK1i returns the
vector consisting of entries of K1i which must be zero so that K̃ can
possibly be extended to a matrix in C(W ).

• Z = (L1∗K∗i − L11K1i − L1iKii)− (K1∗L∗i −K11L1i −K1iLii).

Example 2.3.6. We will use the above algorithm to generate a commuting
triple (W,K,L) with W the nilpotent Weyr block of Weyr structure (5, 4, 3),
and check if it generates an algebra of dimension exceeding 12. We start by
providing (among other things) a seed and some sparsity settings4 to the
routine CommTriplesI, as well as the prime p = 5 indicating the character-
istic of the field over which to work. In response, the program generates
the 5× 5 blocks

K11 =


0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

, L11 =


0 2 0 0 0
0 0 4 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.
These matrices both commute with W1 (which is a zero block) and commute
with each other. Note also that the bottom row of the first four columns of
each matrix contains only zeros, as does the penultimate row of the first three
columns, so these matrices have the potential to be extended to matrices
commuting with W .

Next, we extendK and L to commuting matrices in C(W2). The matrices
determining the linear system are

• M1 = I4 ⊗K11 −KT
22 ⊗ I5 and M2 = −(I4 ⊗ L11 − LT

22 ⊗ I5).

• D has a 1 in the 5, 10, and 15th diagonal positions and zeros elsewhere.

• Z = 0.

The system can be solved, and the program selects the solutions

K12 = 0, L12 =


0 0 0 0
0 0 0 0
0 0 4 0
0 0 0 0
0 0 0 0

.
4The particular settings used to generate these matrices are: (p0, p1, p2, pc) =

(0.5, 0.86, 0.94, 50) and seed = 78, with 5 being the only allowable 0th leading edge di-
mension.
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The linear system governing extension to the third block is given by

• M ′
1 = I3 ⊗K11 −KT

33 ⊗ I5 and M ′
2 = −(I3 ⊗ L11 − LT

33 ⊗ I5)

• D′ = 0, as no further extension is required.

• Z ′ = L12K23 −K12L23.

This system also has solutions, one of which is

K13 = 0, L13 =


0 0 0
0 4 0
0 0 4
0 0 0
0 0 0

.

Therefore the matrices K,L ∈ C(W ) with top rows(
K11 K12 K13

)
,

(
L11 L12 L13

)
form part of the commuting triple (W,K,L). To find the dimension of
(Z/5)[W,K,L], we must compute the dimensions of leading edge subspaces
U0, U1 and U2. This involves finding the rank of matrices of size 25×123, 20×
123 and 15 × 123 – a laborious task5 which we leave to the computer. We
obtain

dimU0 = 5, dimU1 = 4, dimU2 = 3,

the sum of which unfortunately does not violate the matrix size bound of
12. Better luck next time!

5In practice, these matrices will have many zero columns due to the selected spar-
sity settings. Furthermore, the program has subroutines which compute the dimension
iteratively to avoid computing the rank of such matrices directly.
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Chapter 3

Reducibility of Matrix
Varieties

Theories surrounding algebraic and geometric objects combine in the field of
algebraic geometry. The idea is that one can take a collection of polynomials
fi ∈ F [x1, . . . , xn], and study the geometric properties of the set consisting
of points at which every fi vanishes. Think of the case F = R and n = 2,
where the set of roots of any polynomial in X and Y is a subset of the plane.

This set of n-tuples admits a striking topology, at which point we can use
the language and theorems of topology to prove results about such vanishing
sets, and in turn find information about algebraic properties determined by
the vanishing of the polynomials. Since the commuting of A,B ∈Mn(F ) is
determined by the vanishing of the matrix (AB−BA) which is a polynomial
in the entries ofA andB, we can use these tools to study tuples of commuting
matrices, granting us access to an alternative route to study problems on
the dimension of a matrix algebra.

We outline the objects of study, known as affine varieties, in the first
section. The relationship between matrix varieties and matrix algebras cen-
tres around a topological property called irreducibility, which we develop in
the second section. The long-awaited proof of Gerstenhaber’s theorem is one
application of irreducibility of a particular matrix variety, and we cover this
in the third section. By showing that certain matrix varieties are irreducible,
we can show that certain sizes of matrices satisfy the three matrix analogue
of Gerstenhaber’s theorem, so the fourth section covers these known cases.
We conclude the chapter with a proof of Guralnick’s theorem, which shows
that all sufficiently large varieties of commuting triples of matrices are re-
ducible, and hence we cannot use this avenue to fully resolve Gerstenhaber’s
problem. This proof exploits an invariant called the dimension of a variety.
Out treatment of this concept amounts to the statement of some theorems
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prior to giving the proof of Guralnick’s theorem. We include details about
how the proof has changed over time to include more matrix sizes. For a
majority of this section, we use Chapter 7 of [22] as a reference. Note that
for Sections 3.3 to 3.5, we assume that all fields are algebraically closed.

3.1 Affine Varieties

Definition 3.1.1 ([22, p311]). Let F be a field. We define affine n-space
over F to be the set of n-tuples of elements of F , and denote this by An.
We equip this with the Zariski topology, having closed subsets

V (S) := {(a1, . . . , an) ∈ An : f(a1, . . . , an) = 0 for all f ∈ S} ,

where S ⊆ F [x1, . . . , xn]. Such closed subsets are known as affine varieties.

Alternatively, the open subsets are of the form

U(S) := {(a1, . . . , an) ∈ An : f(a1, . . . , an) ̸= 0 for some f ∈ S} .

Paraphrasing [13, p2], the difference in notation between Fn and An

comes from the implicit bundling of Fn with a vector space structure, which
we forget when we consider An.

Figure 3.1: From left to right: varieties V (x4+x2−y2), V (x2−1), and V (0)
depicted as subsets of the plane.2

Foundational theorems3 of algebraic geometry allow us to assume that
the subset S is finite.

If one has affine varieties V ⊆ An,W ⊆ Am and a function f : V → W ,
one can ask if f is represented by polynomials f1, . . . , fm ∈ F [x1, . . . , xn],
that is, f(v) = (f1(v), . . . , fm(v)) for all v ∈ V . Such a function is called

2Diagrams made using Relplot [18].
3More specifically, we can consider the ideal I generated by all elements of S, which by

Hilbert’s basis theorem is finitely generated, so we can take S to be the set of generators.
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a polynomial map, and a polynomial map with an inverse which is also a
polynomial map is called an isomorphism.

Polynomial maps have nice properties with respect to the Zariski topol-
ogy.

Lemma 3.1.2 ([22, Proposition 7.2.7]). Polynomial maps are continuous
with respect to the Zariski topology.

Proof. It is sufficient to show that the preimage of a closed set under a
polynomial map g : An → Am is closed. A polynomial map is given by poly-
nomials g1, . . . , gm ∈ F [x1, . . . , xn]. A closed subset V of Am is determined
by the vanishing of polynomials f1, . . . , fn ∈ F [x1, . . . , xm], so the preimage
of V is exactly the set of points at which the polynomials fi(g1, . . . , gm) all
vanish, i.e. the preimage is closed.

Remark 3.1.3. In [22, p314], it is remarked that, in general, a polynomial
map does not uniquely determine the polynomials f1, . . . , fm, but little ex-
planation is given, so we fill in the reasoning behind this here. Indeed, if
a polynomial map f : V → W is represented by f1, . . . , fm ∈ F [x1, . . . xn],
and g ∈ F [x1, . . . , xn] is a polynomial which vanishes on all of V , then
f is represented by polynomials of the form fi + ghi for any choices of
hi ∈ F [x1, . . . , xn], since the term including hi vanishes due to the presence
of g.

Varieties need not appear to be tuples of points. Indeed, the set Pn of
polynomials of degree at most n admits the structure of a variety through
the following map:

(a0, . . . , an) 7→ a0 + a1x+ a2x
2 + · · ·+ anx

n.

One can consider an n × n matrix with entries in F to be an n2-tuple of
elements in F through vectorisation. More generally, tuples (A1, . . . , Ak)
of such matrices can be identified with Akn2

, and any function which is
a polynomial in the entries of (A1, . . . , Ak) can be written as an element
of F [X1, . . . , Xkn2 ]. We give an example demonstrating how varieties and
polynomial maps integrate with these matrix varieties, which is my own
work. It somewhat generalises [22, Example 7.1.9].

Example 3.1.4. Let

A =

(
a1 a2
a3 a4

)
.
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Then the characteristic polynomial of A is given by

det(λI −A) = (λ− a1)(λ− a4)− a2a3 = λ2 − (a1 + a4)λ+ a1a4 − a2a3,

the coefficients of which are polynomials in the entries of A. Hence the
map f : M2(F ) → A3 sending a matrix to the coefficients of its char-
acteristic polynomial is a polynomial map. More generally, the map f :
Mn(F ) ×Mn(F ) → A2n+2 sending a pair of matrices to the coefficients of
their characteristic polynomials is a polynomial map. Consider the variety
in A2n+1 determined by the vanishing of the polynomials

(x1 − y1), . . . , (xn+1 − yn+1) ∈ F [x1, . . . , xn, y1, . . . , yn].

The preimage of this variety under f is the set of pairs of matrices with the
same characteristic polynomial, so such a set is Zariski-closed.

Another relation determined by the vanishing of polynomials in the en-
tries of a pair of matrices is commutativity, determined by the vanishing of
the n2 polynomials which are the entries of the matrix AB−BA. Thus the
set of commuting k-tuples is an affine variety determined by the vanishing
of the polynomials AiAj −AjAi = 0, where we run over all unordered pairs
(i, j) with 1 ≤ i, j ≤ k.

Definition 3.1.5 ([22, Example 7.1.5]). We call

C(k, n) := {(A1, . . . , Ak) : Ai ∈Mn(F ), AiAj = AjAi}

the variety of commuting k-tuples of n× n matrices over F .

The following lemma encapsulates a result frequently used in [22, Chap-
ter 7].

Lemma 3.1.6. Let f : W → Mr×s(F ) be some polynomial function. Then
the sets

V = {a ∈W : rank f(a) ≤ i} , U = {a ∈W : rank f(a) ≥ i}

are Zariski-closed and Zariski-open respectively.

Proof. Let A ∈ Mr×s(F ). Then rankA ≤ i if and only if the determinants
of each of its (i + 1) × (i + 1) submatrices vanish. Similarly rankA ≥ i if
and only if M has an i× i submatrix with nonvanishing determinant. The
determinant of a submatrix of A is a polynomial in the entries of A, so if Si is
the set of polynomials representing the determinants of all i× i submatrices
of A, then V is the preimage of V (Si+1) under f and U is the preimage of
U(Si) under f , so V and U are closed and open respectively.
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Earlier we introduced k-regular matrices as matrices with eigenspaces of
dimension bounded above by k, but an equivalent definition proves useful in
showing that the set of k-regular matrices is a Zariski-open set. Literature
on the properties of k-regular matrices is scarce, so the proof of the following
result is my own work, and interestingly enough is an application of the Weyr
form. The result itself is used in [20, Section 1], and a different proof likely
exists in writing elsewhere.

Lemma 3.1.7. Let F be an algebraically closed field. Then a matrix A ∈
Mn(F ) is k-regular if and only if there exist v1, . . . , vk ∈ Fn such that the
set

{
Aivj : 0 ≤ i ≤ n− 1, 1 ≤ j ≤ k

}
spans Fn.4

Proof. For conciseness, if A ∈Mn(F ) and

A =
{
Aivj : 0 ≤ i ≤ n− 1, 1 ≤ j ≤ k

}
spans Fn, call v1, . . . , vk an A-basis of Fn. Note that the span of A is equal
to the span of {p(A)vj : p ∈ F [X], 1 ≤ j ≤ k}.

We first prove the equivalence of the statements for Weyr blocks, and
then extend the result to all matrices. Let W be a nilpotent Weyr block
with Weyr structure (n1, . . . , ns) which is k-regular but not (k− 1)-regular.
Then n1 = k, and ni ≤ k for all i. Recall from Remark 1.2.1 that we can
partition the standard basis into sets B1, . . . ,Bs such that multiplication
by W kills the elements of B1 and sends elements of Bi+1 to Bi. For each
i, |Bi| = ni ≤ k. Let vi,1, . . . , vi,ni be the elements of each Bi labelled in
such a way that Wvi+1,j = vi,j . Let (m1, . . . ,mk) be the dual partition to
(n1, . . . , ns). Define

wj = v1,j + · · ·+ vmj ,j .

We have
W iwj = v1,j + · · ·+ vmj−i,j .

Therefore (W i −W i+1)wj = vmj−i,j . Running over 1 ≤ j ≤ k and 0 ≤ i <
mj gives the desired result.

For the converse, assume that W is (k + 1)-regular but not k-regular,
and suppose that w1, . . . , wk is a W -basis. The nullity of W is n1, and since
the vectors W iwj for 1 ≤ i ≤ s− 1 are all contained in the image of W , the
dimension of their span cannot exceed n− n1. Thus w1, . . . , wk alone must
span an n1-dimensional space, which is impossible as k < k + 1 = n1.

4This is equivalent to the statement that v1, . . . , vk generate Fn as a F [A]-module.
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To show the equivalence of the statements for a general matrix A, con-
jugate A into Weyr form W =

⊕s
i=1(λiI + Wi). Suppose A is k-regular.

Then each Weyr block Wi must be k-regular, so there exists a Wi-basis
vi,1, . . . , vi,k ∈ Fni . View Fn as Fn1 × · · · × Fns . By Lemma 2.2.3, we can
express Ii, the matrix with the identity in the ith diagonal block and zero
elsewhere, as pi(W ). Thus

pi(W )(v1,j + · · ·+ vs,j) = vi,j ,

and it follows that the vectors v1,i + · · ·+ vs,i for 1 ≤ i ≤ k give a W -basis
for Fn. Changing the basis of the vectors gives us an A-basis for Fn

Conversely, if v1, . . . , vk is an A-basis, then after changing basis we obtain
a W -basis. By Lemma 2.2.3 there exist polynomials in W which split the
vectors into components vi,1, . . . , vi,k which generate Fni for each i, so each
Weyr block is k-regular, meaning A is k-regular.

Example 3.1.8. This example demonstrates how to find an A-basis of a
regular matrix A, and is my own work. Let A = P−1WP , where W is the
Weyr matrix

(
W1

W2

)
=



1 0 0 1 0
0 1 0 0 1
0 0 1 0 0

1 0
0 1

−1 1
−1 1

−1


,

which has Weyr structure (3, 2) associated to the eigenvalue 1 and (1, 1, 1)
associated to the eigenvalue −1. We can see that W is 3-regular, so we can
find aW -basis. The vectors e1+e4, e2+e5, e3 form aW1-basis and e6+e7+e8
on its own is a W2-basis. Therefore e1 + e4 + e6 + e7 + e8, e2 + e5, e3 is a
W -basis. Applying the change of basis represented by P gives us an A-basis.

Lemma 3.1.9 ([20, Proposition 1]). Let F be an algebraically closed field.
The set of k-regular matrices is open in Mn(F ).

Proof. Fix some k-tuple V = (v1, . . . , vk), with each vi ∈ Fn. Given a matrix
A, construct the n× kn matrix M(A,V) where the columns are the vectors
Aivj running over all i, j. Then the function A 7→M(A,V) is a polynomial
map. The vectors Aivj span Fn exactly when M(A,V) has rank n, so by
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Lemma 3.1.6, the set of matrices A such that the Aivj span Fn is open.
The set of k-regular matrices is the union over all V of these open sets, so
is itself open.

In view of this, any subset of C(k, n) determined by the condition that
the ith matrix of a tuple be j-regular is also open, since it is the preimage of
the set of j-regular matrices under the projection to the ith element, which
is a polynomial map.

3.2 Reducibility

The following property is essential for our treatment of matrix varieties in
later sections.

Definition 3.2.1 ([22, Definition 7.4.1]). Let V ⊆ An. We call V reducible
if there exist proper closed subsets C1, C2 of V such that V = C1 ∪C2, and
irreducible otherwise.

An equivalent condition for a set V being irreducible is that each pair
U1, U2 of nonempty open subsets of V has nonempty intersection, or equally
that every open subset of V is dense in V . Note that these definitions extend
to arbitrary topological spaces.

The first part of this example explains a remark in [22, p323], and the
second is my own example of a reducible variety.

Example 3.2.2.

1. It is apparent that any Hausdorff topological space X with more than
one point is reducible, since for any x, y ∈ X we can find disjoint open
sets U, V containing x and y respectively, and taking complements
gives the desired result. For instance, R with the standard topology
can be written as (−∞, 1] ∪ [−1,∞).

2. The variety V over C determined by the vanishing of the polynomial
(x4y4− 4) is reducible. Indeed, we can consider the the closed subsets
V ∩V (x2y2−2) and V ∩V (x2y2+2) of V . Every point of V is contained
in one of these closed sets, as (x4y4 − 4) = (x2y2 − 2)(x2y2 + 2).
Moreover the closed sets are disjoint and nonempty, so are proper
subsets of V .

The book [22, Chapter 7] includes some examples of prominent sub-
groups of Mn(F ) and methods for determining their reducibility. In the

40



spirit of this, we give an example of our own that lies in a similar vein, but
with a family of matrix groups not mentioned in the text.

Example 3.2.3. Let F be an algebraically closed field, and (·, ·) : Fn×Fn →
F a bilinear form on Fn, that is, a map which is linear in both variables.
What algebro-geometric properties has the matrix group

V = {A ∈Mn(F ) : (Av,Aw) = (v, w) for all v, w ∈ Fn}?

First, is V a variety? We can represent the bilinear form by a matrix B ∈
Mn(F ) so that

(v, w) = wTBv

for all v, w ∈ Fn. Then for a matrix A, preservation of the bilinear form is
equivalent to

ATBA = B,

that is, V is determined by the vanishing of ATBA−B, so V is a variety.
We give some cases in which V can be seen to be reducible. One nec-

essary condition for ATBA = B is that det(A)2 det(B) = det(B), which,
for detB ̸= 0, requires that det(A)2 = 1. Hence if n is odd and F has
characteristic greater than 2, the matrices I and −I both lie in V , and so
the disjoint closed sets V ∩ V (detA− 1) and V ∩ V (detA+ 1) which cover
V are nonempty. Therefore in this case, V is reducible.

Lemma 3.2.4 ([22, Propositions 7.2.6, 7.4.2]). Over an infinite field, An is
irreducible.

Proof. We first prove that a polynomial vanishes on all of An over an infinite
field if and only if the polynomial is zero. The statement is trivially true
for constant polynomials. A single variable polynomial of positive degree
has finitely many roots by the fundamental theorem of algebra acting as our
base case. We will perform an inductive step to prove the statement for all
polynomials.

Let f ∈ F [x1, . . . , xn+1] and assume without loss of generality that the
degree of xn+1 is k ≥ 1. Then we can write

f(x1, . . . , xn+1) = f0 + xn+1f1 + · · ·+ xkn+1fk,

where each fi ∈ F [x1, . . . , xn], and fk is nonzero. Fixing a1, . . . , an with
fk(a1, . . . , an) ̸= 0, which is permissible by the induction hypothesis, gives
us a nonzero polynomial f(a1, . . . , an, xn+1) in a single variable, which has
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finitely many roots, so must have infinite nonvanishing set, and in particular,
does not vanish on all of An.

It suffices to show that U(f)∩U(g) is nonempty for nonempty U(f), U(g),
as sets of this form give a basis for the open subsets of An. Assume f, g ̸= 0.
Since F [x1, . . . , xn] is an integral domain, fg ̸= 0, so fg does not van-
ish everywhere by the above claim, and therefore U(fg) ⊆ U(f) ∩ U(g) is
nonzero.

Immediate from Lemma 3.2.4 is the fact that Mn(F ) and Pn are irre-
ducible for matrix entries/coefficients in an infinite field. This is essential for
the proofs of (ir)reducibility of C(k, n), so from now on, we assume that all
fields are algebraically closed, and therefore infinite, unless otherwise stated.

The following results are purely topological, and we state them without
proof.

Lemma 3.2.5 ([22, Propositions 7.4.3, 7.4.14]).

1. The continuous image of an irreducible set is irreducible.

2. V ⊆ An is irreducible if and only if its closure in An, denoted V , is
irreducible.

Remark 3.2.6. One consequence of part 1 of the above lemma is that a
line between two points a, b ∈ An is irreducible. This follows from the fact
that

f : A→ An,

t 7→ at+ b(1− t),

is a polynomial map with irreducible domain, so has irreducible image. We
use this fact frequently in the following two sections.

If V ⊆ An,W ⊆ Am, then we can define the product V ×W to be the
usual Cartesian product of V and W as sets, but with topology the subspace
topology of An+m. We stress as in [22, Remark 7.2.8] that this is not equal
to the set V ×W with the product topology, though projections V ×W → V
and inclusions v 7→ (v, w) for fixed w are still polynomial maps: a property
that the following result relies on, making it true for general topological
spaces with the product topology as well.

Lemma 3.2.7 ([22, 7.4.16]). Let V ⊆ An,W ⊆ Am be irreducible. Then
V ×W is irreducible.
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The following theorem is essential to the definition of the dimension of
a variety, as we will see in Section 3.5. We state it without proof.

Theorem 3.2.8. Let V ⊆ An. Then there exist unique irreducible sets
V1, . . . , Vk ⊆ An such that V = V1 ∪ · · · ∪ Vk. We call the Vi the irreducible
components of V . Note that the components are not necessarily disjoint.

Example 3.2.9. Let U ⊆Mn(F ) be the set of 1-regular matrices. Consider
the subset Xi of C(k, n) where the ith matrix is 1-regular. Denote by X the
intersection of all such sets, so X is the subset of C(k, n) where all matrices
in each tuple are 1-regular. We will show irreducibility of X1 using the same
method as the proof of [22, Theorem 7.6.1] and use this to show irreducibility
of all Xi through irreducibility of X in the same way as [20, Lemma 11].

The domain of the polynomial function

f : Mn(F )× P k−1
n → C(k, n),

f(A, p1, . . . , pk−1) = (A, p1(A), . . . , pk−1(A)),

is irreducible, and therefore so is its image. The fact that X1 is open follows
from Lemma 3.1.9, and in view of Theorem 2.2.4, X1 is contained in im f .
Therefore X1 is dense in im f , that is X1 = im f , so X1 is irreducible.

Now note that X ⊆ Xi, so X ⊆ Xi. We want to show equality, so we will
show the reverse inclusion. Fix (A1, . . . , Ak) ∈ Xi. Then the line L defined
by the image of the polynomial map

f : A→ C(k, n)
t 7→ (A1t+Ai(1− t), . . . , Akt+Ai(1− t)),

intersects X at t = 0. Since X is open as it is the intersection of k open
sets, X ∩ L is dense in L, so we have

(A1, . . . , Ak) ∈ L = X ∩ L ⊆ X,

and since (A1, . . . , Ak) was chosen arbitrarily, we have Xi ⊆ X, so Xi = X.
Irreducibility of X, and therefore irreducibility of all Xi, follows from this.

Remark 3.2.10. In fact, if we were to define Xi to be the subset of C(k, n)
with the ith matrix k-regular, then the same argument used above estab-
lishes that Xi = X for all i (though (ir)reducibility of X and Xi cannot be
determined by this argument, as a k-regular matrix A may commute with
a matrix outside of F [A] if k ≥ 2).
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The sets of i-regular matrices will prove indispensable when studying
irreducibility of the matrix varieties C(k, n). If we fix some A ∈ Mn(F ),
then we can consider a related variety, C(k,A), defined as in [7] to be the set
of commuting k-tuples of matrices A1, . . . , Ak such that each Ai commutes
withA. This is a variety, and we may wish to consider whether it is reducible.

Theorem 3.2.11. If A is a 3-regular matrix, then C(k,A) is irreducible.

Note that all 1- and 2-regular matrices are also 3-regular by our def-
inition. Proofs for 2-regular and 3-regular matrices can be found in [20,
Corollary 10] and [26, Theorem 12] respectively, and for 1-regular matrices
the proof follows from the isomorphism of C(k,A) with the irreducible vari-
ety P k

n . The varieties C(2, A) influence our knowledge of where to check for
counterexamples to Gerstenhaber’s problem via the following theorem.

Theorem 3.2.12 ([26, Corollary 20]). If C(2, A) is irreducible and (B,C) ∈
C(2, A), then dimF [A,B,C] ≤ n.

3.3 Gerstenhaber’s Theorem via Algebraic Geom-
etry

The following theorem cements the connection between Gerstenhaber-like
problems and the problem of reducibility of matrix varieties.

Theorem 3.3.1 ([22, Proposition 7.6.5]). Consider C(k, n) over F . If
C(k, n) is irreducible then for all commuting A1, . . . , Ak ∈ Mn(F ), we have
dimF [A1, . . . , Ak] ≤ n.

Proof. Let W = {(A1, . . . , Ak) ∈ C(k, n) : dimF [A1, . . . , Ak] ≤ n}. Since a
1-regular matrix A commutes only with polynomials in A, W contains the
set X1. Since C(k, n) is irreducible, X1 is dense in C(k, n), so if we can show
that W is closed then we have

C(k, n) = X1 ⊆W = W ⊆ C(k, n),

so W = C(k, n), which proves the theorem.
To show that W is closed, consider the polynomial map sending the

matrices A1, . . . , Ak to the (n2 × nk) matrix whose columns are the vectori-
sations of the products Ai1

1 · · ·A
ik
k , where 0 ≤ ij ≤ n − 1. The dimension

of F [A1, . . . , Ak] is the rank of M(A1, . . . , Ak), so the fact that W is closed
follows from Lemma 3.1.6.
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Example 2.2.8 together with Theorem 3.3.1 therefore serves as a proof
that C(k, n) is reducible for k, n ≥ 4. It is through the route unlocked by
Theorem 3.3.1 that we prove Gerstenhaber’s theorem, and give a partial
answer to Gerstenhaber’s problem for particular matrix sizes.

One of the earliest results on the reducibility of C(k, n) is due to Motzkin
and Taussky.

Theorem 3.3.2 (Motzkin-Taussky, [22, Theorem 7.6.1]). C(2, n) is irre-
ducible for all n.

The strategy is to show that the set X1 is dense in C(2, n).

Lemma 3.3.3. Let A ∈Mn(F ). Then there exists a 1-regular matrix which
commutes with A.

Proof. Let J1 ⊕ · · · ⊕ Jk be the Jordan normal form of A, where the block
Ji has eigenvalue ai. If we choose distinct bi ∈ F , then the matrix

B = (J1 + (bi − ai)I)⊕ · · · (Jk + (bk − ak)I)

commutes with A, and is a Jordan matrix with exactly one block corre-
sponding to each eigenvalue bi, so by Remark 2.2.5, B is 1-regular.

The following proof differs from that given in [22] in that we instead
use the irreducibility of lines to prove that the set of matrices with the first
matrix 1-regular is dense in C(2, n). This technique is used multiple times
in [7].

Proof (of Motzkin-Taussky). Fix (A,B) ∈ C(2, n). Then B commutes with
a 1-regular matrix, call it R. Therefore the line L determined by the image
of the polynomial function t 7→ (tA + (1 − t)R,B) intersects X1 at t = 0.
Lines are irreducible, so X1 is dense in L, meaning (A,B) ∈ L = X1 ∩ L ⊆
X1. Since (A,B) was arbitrary, C(2, n) = X1. Example 3.2.9 establishes
irreducibility of X1, which in turn establishes irreducibility of C(2, n).

3.4 Cases of Irreducibility of C(3, n)
The variety C(3, n) is known to be irreducible for 1 ≤ n ≤ 4 over algebraically
closed fields of arbitrary characteristic, and for 5 ≤ n ≤ 10 over algebraically
closed fields of characteristic zero5. The root of this is the difference of
techniques: cases 1 through 4 are proven through the framework of algebraic
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geometry, and cases 5 through 10 are proven by way of a different linked
problem.

Proving that C(3, n) is irreducible for small matrices requires us to con-
sider maximal subalgebras.

Definition 3.4.1 ([22, p221]). Let A be a proper subalgebra of B. We call
A a maximal subalgebra of B if, for any other proper subalgebra A′ of B,
A ⊆ A′ implies A = A′.

We state the following theorem without proof, and refer the reader to
the papers [15] and [19] in which it was independently proven.

Theorem 3.4.2 (Laffey-Lazarus; Neubauer-Saltman). Let A,B ∈ Mn(F ).
Then F [A,B] is a maximal subalgebra of Mn(F ) if and only if dimF [A,B] =
n.

Lemma 3.4.3 ([22, Example 5.4.5]). Let A be a subalgebra of Mn(F ) for
n ≤ 3. Then A = F [X,Y ] for some X,Y ∈ A.

Proof. Suppose the algebra A is not 2-generated, and therefore contains
matrices I,X, Y, Z where I is the identity and Z /∈ F [X,Y ] The subal-
gebra F [X,Y ] of A has dimension 3 as it contains the linearly indepen-
dent matrices I,X, Y . For n = 1, 2 we have already reached a contradic-
tion, as dimF [X,Y ] ≤ n by Theorem 2.2.7, whereas for n = 3, Theo-
rem 2.2.7 tells us that dimF [X,Y ] = 3, and therefore by Theorem 3.4.2
F [X,Y ] must be a maximal subalgebra of Mn(F ), which is a contradiction
as F [X,Y ] ⊊ F [X,Y, Z]).

For small matrices, the proof is uniform and even holds for tuples con-
taining any number of matrices.

Theorem 3.4.4 ([22, Corollary 7.6.7]). C(k, n) is irreducible for n ≤ 3.

Proof. Let A1, . . . , Ak be a commuting k-tuple of n× n matrices. It follows
from Lemma 3.4.3 that the algebra F [A1, . . . , Ak] is equal to F [X,Y ] for
some commuting X,Y ∈ F [A1, . . . , Ak]. Hence Ai ∈ F [X,Y ], so we can
express Ai as a polynomial fi(X,Y ) where each fi lies in the set

Q := {fi ∈ F [x, y] : the coefficient of xrys is zero if r ≥ n or s ≥ n} .
5In [9], it is remarked that Sethuraman claims n = 11 is irreducible, but no proof has

been published.
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Hence the commuting k-tuple lies in the image of the polynomial function

η : C(2, n)×Qk → C(k, n)
η(X,Y, f1, . . . , fk) = (f1(X,Y ), . . . , fk(X,Y )).

Since the chosen k-tuple was arbitrary, the function η is surjective. The set
C(2, n) is irreducible by Theorem 3.3.2, andQ is isomorphic to the irreducible
variety An2

, so the image C(k, n) is also irreducible.

The only other variety of commuting triples that is known to be irre-
ducible over fields of arbitrary characteristic is C(3, 4). Much like the proof
of irreducibility for C(2, n) relied on the usage of 1-regular matrices, we delve
into 2-regularity for the purposes of this proof.

The reduction of the case where either matrix has multiple eigenvalues
was not explained at source, so we filled in the details in the following proof.

Lemma 3.4.5 ([7, Theorem 8]). If A,B ∈ M4(F ) commute, then there
exists a 2-regular matrix that commutes with both A and B.

Proof. Let (A,B) ∈ C(2, 4). If A has multiple eigenvalues then we can
conjugate A into Weyr form and isolate each Weyr block. Since B commutes
with A, the image of B under this conjugation is also block-diagonal with
respect to the same partition as A by Lemma 1.2.7. Hence the problem
reduces to finding a 2-regular matrix that commutes with any commuting
pair of matrices of size 3 or smaller. Since all non-scalar matrices of size 3
or less are 2-regular, if either matrix is scalar then take the other, and if
both are scalar then take any non-scalar matrix.

We can assume, therefore, that A and B are both non-scalar matrices
with a single eigenvalue. Assume that the eigenvalues of A and B are zero,
since if a 2-regular matrix commutes with the nilpotent part, then it com-
mutes with the whole matrix.

Assume neither A nor B is 2-regular, and since neither is scalar, both
have Weyr structure (3, 1). Hence A and B have nullity 3, so kerA ∩ kerB
has dimension at least 2. Furthermore A and B both have 1-dimensional
image.

Denote by W (V ) the image of the space V under multiplication by a
matrix W . If V is 1-dimensional and W (V ) ⊆ V , then since W has single
eigenvalue 0, we must have W (V ) = 0 i.e. V ⊆ kerW . We have

A(imB) = imAB = imBA = B(imA) ⊆ imB,

and since imB is 1-dimensional, imB is contained in the kernel of A. Note
B2 = 0 as the Weyr structure of B has 2 parts, so imB is also contained
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in the kernel of B. Therefore imB ⊆ kerA ∩ kerB, and a similar argument
shows that imA ⊆ kerA ∩ kerB.

Let w1, w2 be linearly independent vectors contained in kerA ∩ kerB
that span both imA and imB. Extend this to a basis w1, . . . , w4 of F 4 and
consider the 2-regular nilpotent Weyr block

R =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


with respect to this basis. Multiplication by A,B, or R, sends the space
spanned by w1, . . . , w4 to the space spanned by w1, w2, which is killed by
subsequent multiplication by A,B or R. Thus all products of A,B and R
are zero, so the matrices commute.

Let Xi be the subset of C(3, 4) with the ith matrix 1-regular, and Yi
the subset of C(3, 4) with the ith matrix 2-regular, with X and Y their
intersections over all i. The proof of the following theorem comes in two
parts: showing C(3, 4) = Y , and then showing Y = X, and irreducibility of
C(3, 4) therefore follows from Example 3.2.9.

Theorem 3.4.6 ([7, Theorem 8]). C(3, 4) is irreducible.

Proof. Let (A,B,C) ∈ C(3, 4). Then by Lemma 3.4.5, there exists a 2-
regular matrix R which commutes with both B and C. The line L defined
to be the image of the polynomial map t 7→ (At+R(1− t), B,C) intersects
Y1 at t = 0, and since Y1 is open, Y1 is dense in L, so (A,B,C) ∈ Y1 = Y .
Since (A,B,C) was arbitrary, C(3, 4) = Y .

To establish X = Y , first recognise that all 1-regular matrices are also
2-regular, so X ⊆ Y . To prove the other direction, fix (A,B,C) ∈ Y . Then
A commutes with some 1-regular matrix R, so (R, 0) ∈ C(2, A). Using 2-
regularity of A and Theorem 3.2.11, the set C(2, A) is irreducible. We embed
C(2, A) in C(3, 4) as the image of the polynomial map

f : C(2, A)→ C(3, 4)
(X,Y ) 7→ (A,X, Y ).

Then (A,R, 0) lies in X2 ∩ im f , and since im f irreducible, X2 is dense in
im f , so (A,B,C) ∈ im f ⊆ X2 = X. Therefore Y ⊆ X, so Y = X proving
the theorem.
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The remaining known cases 5 ≤ n ≤ 10 are consequences of approaching
the problem via a different route. We have already seen that reducibility
of commuting varieties links to the problem of bounding the dimension of
a matrix algebra, and the following theorem provides yet another route for
such problems to be studied. Several authors have provided techniques for
perturbing triples of commuting matrices of various sizes, before using the
following theorem to establish reducibility of C(3, n).
Theorem 3.4.7 ([22, Theorem 7.5.2]). The variety C(k, n) over C is ir-
reducible if and only if any commuting k-tuple of n × n matrices can be
perturbed to simultaneously diagonalisable matrices, that is, for any k-tuple
(A1, . . . , Ak) and ϵ > 0, there exist matrices (B1, . . . , Bk) and P ∈ GLn(C)
such that for all i,

• P−1BiP is diagonal, and

• if c1, . . . , cn2 are the entries of (Ai−Bi), then
√
|c1|2 + · · ·+

∣∣c2
n2

∣∣ < ϵ.

3.5 Dimension and Guralnick’s Theorem

The final major result relating to reducibility of varieties of commuting
triples which we will discuss is Guralnick’s theorem.

Theorem 3.5.1 (Guralnick, [6, Theorem 3]). C(3, n) is reducible for n ≥ 29.

Our final section is dedicated to a proof of Guralnick’s theorem. The
proof works by contradiction: our strategy is to define a property of varieties
invariant under isomorphism known as dimension. If C(k, n) is irreducible,
then its dimension can be expressed as a function of k and n. Given a
specially chosen n × n matrix A, we look at the dimension of C(A). Using
this, we can obtain a lower bound for dim C(2, A) by looking at how many
restrictions we must impose on the entries of a pair of matrices in C(A) to
force them to commute. Then C(2, A) is used to generate a subset of C(3, n)
with larger dimension than C(3, n): an impossibility.

The proof has developed over time, and Guralnick’s original argument
[6, Theorem 3] works only for n ≥ 32. The matrix A used is displayed below,
as well as a certain form of matrix in the centraliser of A used by Guralnick.
All blocks are of size s× s, so n = 4s.

A =


0 I 0 0
0 0 0 I
0 0 0 0
0 0 0 0

 ,


0 A B C
0 0 0 A
0 0 0 D
0 0 0 0


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Then s2 commutation restrictions are required, giving dimC(2, A) ≥ 7s2.
An adaptation of the proof found in [11] extends the argument to n =

30, 31. Given positive integers a+ 3b = n, the authors instead consider the
matrix A equal to the direct sum of an a×a zero block and b 3×3 nilpotent
Jordan blocks. This is a Jordan matrix of Jordan structure

(

b times︷ ︸︸ ︷
3, . . . , 3,

a times︷ ︸︸ ︷
1, . . . , 1)

which by Jordan-Weyr duality has Weyr structure (b + a, b, b), the Weyr
structure of the matrix A we will consider. A small adjustment in [22]
covers n = 29 as well, the trick being that the subset generated by C(2, A)
obtained in [11] is contained in a variety strictly contained in C(3, n), so
must have strictly smaller dimension.

We opt for a simplified definition of dimension provided by [22, Propo-
sition 7.8.3].

Definition 3.5.2. Let V ⊆ An be an irreducible variety. We define the di-
mension of V to the the largest m such that for some distinct indeterminates
xi1 , . . . , xim ∈ F [x1, . . . , xn], the only polynomial f ∈ F [xi1 , . . . , xim ] ⊆
F [x1, . . . , xn] is the zero polynomial.

The concept can be extended to arbitrary sets in affine n-space.

Definition 3.5.3 ([22, p355]). Let X ⊆ An. If X is a variety, define dimX
to be the maximum dimension of its irreducible components. Otherwise,
define dimX to be the dimension of X.

We state some results on dimension which are used in the proof of Gu-
ralnick’s theorem. Proofs can be found in [22, Chapter 7].

Lemma 3.5.4.

• Dimension is invariant under isomorphism.

• If V ⊆W ⊆ An then dimV ≤ dimW .

• If V ⊆W ⊆ An are varieties with W irreducible then dimV = dimW
implies V = W .

• For V ⊆ An,W ⊆ Am, we have dim(V ×W ) = dimV + dimW .

The first substantial step towards proving Guralnick’s theorem is deter-
mining the dimension of C(k, n) when the variety is irreducible.
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Proposition 3.5.5 ([22, Lemma 7.9.1]). If C(k, n) is irreducible then its
dimension is n2 + (k − 1)n.

Proof. The set U of 1-regular matrices is open in Mn(F ), so its closure has
dimension n2. Therefore by definition, U has dimension n2. The subset
X1 of matrices (A1, . . . , Ak) with A1 1-regular is open, and therefore dense
by irreducibility of C(k, n), so its dimension is equal to the dimension of
C(k, n). Recall from Theorem 2.2.4 that the matrices commuting with A
are exactly those of the form p(A) where p has degree at most (n−1). Then
the polynomial map

f : U × P k−1
n → X1,

(A, p1, . . . , pk−1) 7→ (A, p1(A), . . . , pk−1(A)),

is an isomorphism, and Pn
∼= An so dim C(k, n) = dimX1 = n2+(k−1)n.

The next step is to construct a subset of C(3, n) with dimension exceeding
this. We utilise a family of such subsets which depend on a pair a, b ∈ N.

Consider the nilpotent Weyr block W with Weyr structure (b + a, b, b),
and denote by Γ0 the set of pairs (K,K ′) of matrices of the form

K =


0 A B C
0 0 0 D
0 0 0 B
0 0 0 0

 , K ′ =


0 A′ B′ C ′

0 0 0 D′

0 0 0 B′

0 0 0 0


where we have blocked the matrices according to the partition6 (b, a, b, b).

The set Γ0 is isomorphic to A4ab+4b2 . Note that K and K ′ both commute
with W but do not necessarily commute with each other. Comparing the
entries of the products KK ′ and K ′K gives us the commutation requirement

AD′ +BB′ = A′D +B′B ∈Mb(F ),

giving a total of b2 equations to impose on Γ0 to obtain the set Γ = Γ0 ∩
C(2,W ). To find the dimension of Γ, we use the following theorem.

Lemma 3.5.6 ([22, Theorem 7.8.6]). Let V ⊆ An over F and f ∈ F [x1, . . . , xn].
If V ∩ V (f) ̸= ∅ but V is not contained in V (f) then

dim(V ∩ V (f)) = dimV − 1.

6In this section, we temporarily violate our requirement that a partition (n1, . . . , ns)
of n must satisfy n1 ≥ n2 ≥ · · · ≥ ns.
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The main consequence of this result is that imposing a single polynomial
condition on a variety can reduce its dimension by at most 1, so imposing r
further polynomial conditions on a variety drops the dimension by at most
r (provided V ∩ V (f1) ∩ V (f2) ∩ · · · ∩ V (fr) is nonempty). Therefore we
obtain the inequality

dimΓ ≥ (4ab+ 4b2)− b2 = 4ab+ 3b2.

The next step is to “embed” Γ into C(3, n). Conjugation preserves com-
mutativity, as does adding scalar matrices, and exploiting these facts allows
us to maximise the dimension of the “embedded” version of Γ in C(3, n). To
obtain a bound on the dimension of this set, we use the dimension of fibres
theorem.

Theorem 3.5.7 (Dimension of Fibres Theorem, [22, Theorem 7.8.12]). Let
f : V → Am be a polynomial map, where V ⊆ An. Then there exists
w ∈ im f such that

dim f−1(w) ≥ dimV − dim im f.

Lemma 3.5.8 ([22, Lemma 7.9.2]). Consider the polynomial map

f : Γ× A3 × SLn(F )→ C(3, n)
(K,K ′, λ1, λ2, λ3, P ) 7→ (P−1WP + λ1I, P

−1KP + λ2I, P
−1K ′P + λ3I).

We have dim im f ≥ n2 + 2ab− a2 + 3.

Proof. We first find the dimension of a fibre f−1(A,B,C) with (A,B,C) ∈
im f . Therefore

(A,B,C) = (P−1WP + λ1I, P
−1KP + λ2I, P

−1K ′P + λ3I)

for some (K,K ′) ∈ Γ, (λ1, λ2, λ3) ∈ A3, P ∈ SLn(F ). Consider some

γ := ((L,L′), (µ1, µ2, µ3), Q) ∈ Γ× A3 × SLn(F ).

Then γ ∈ f−1(A,B,C) if and only if the following criteria hold:

1. P−1WP +λ1I = Q−1WQ+µ1I, so equating eigenvalues gives us λ1 =
µ1, and we therefore obtain QP−1W = WQP−1, so QP−1 ∈ C(W ).

2. P−1KP+λ2I = Q−1LQ+µ2I, so λ2 = µ2, and L = QP−1K(QP−1)−1.

3. Similarly, λ3 = µ3 and L′ = QP−1K ′(QP−1)−1.
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Thinking of Z as QP−1, we conclude that

γ = ((ZKZ−1, ZK ′Z−1), (λ1, λ2, λ3), ZP ),

where any choice of Z ∈ C(W )∩SLn(F ) determines a unique γ in the preim-
age of (A,B,C). That is, we have the following isomorphism of varieties:

C(W ) ∩ SLn(F )→ f−1(A,B,C),

Z 7→ ((ZKZ−1, ZK ′Z−1), (λ1, λ2, λ3), ZP ),

its inverse being the polynomial map (L,L′, µ1, µ2, µ3, Q) 7→ QP−1. It fol-
lows that dim f−1(A,B,C) = dim(C(W ) ∩ SLn(F )). From Remark 1.2.6,
C(W ) ∼= A(b+a)2+b2+b2 , so dim C(W ) = a2+2ab+3b2. Since SLn(F ) is deter-
mined by the vanishing of the single polynomial (det−1), intersection with
SLn(F ) drops the dimension by 1, so dim f−1(A,B,C) = a2+2ab+3b2− 1.

Using the dimension of fibres theorem then gives us

dim im f ≥ dim(Γ× A3 × SLn(F ))− dim f−1(A,B,C)

= dimΓ + dimA3 + dimSLn(F )− dim f−1(A,B,C)

≥ (4ab+ 3b2) + 3 + n2 − 1− a2 − 2ab− 3b2 + 1

= n2 + 2ab− a2 + 3.

Proof (of Guralnick’s Theorem). Assume that C(3, n) is irreducible. Let f
be the function from the previous theorem. Note that every triple in im f
contains a matrix with a repeated eigenvalue. The set X of such matrices is
closed, since any symmetric polynomial in the eigenvalues of a matrix can be
expressed as a polynomial in the entries of the matrix (see [22, Proposition
7.1.10] for a proof of this). Note that X ̸= C(3, n); take the triple (D,D,D)
with D a diagonal matrix with each diagonal entry distinct.

Since im f ⊆ X ⊂ C(3, n), then if C(3, n) is irreducible, we have

n2 + 2ab− a2 + 3 = dim im f

≤ dimX

< dim C(3, n)
= n2 + 2n

= n2 + 2a+ 6b

Therefore if for a given n there exist a, b ∈ N such that a+ 3b = n and

0 < a2 + (2− 2b)a+ (6b− 3)
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then we derive a contradiction, so if we consider a2 + (2− 2b)a+ (6b− 3) to
be a polynomial in a, we need the polynomial to have real roots, meaning
b2− 8b+4 ≥ 0, so b ≥ 8, and we need a to lie in the interval between them.
That is, we can take a to be any positive integer satisfying

(b− 1)−
√
b2 − 8b+ 4 ≤ a ≤ (b− 1) +

√
b2 − 8b+ 4.

Plugging in a = 5, 6, 7, 8 with b = 8 gives us the required contradiction
for matrices of size 29, 30, 31 and 32. To prove the theorem for all larger
matrix sizes, observe that the size of the interval which must contain a
increases as we increment b. If n = a+ 3b with

(b− 1)−
√

b2 − 8b+ 4 ≤ a ≤ (b− 1) +
√
b2 − 8b+ 4,

and a + 1 does not lie in this interval, then since each interval has size at
least 4, we know that the integers (a−3), (a−2), (a−1) and a are contained
in the interval. Then we can consider the interval

b−
√

(b+ 1)2 − 8(b+ 1) + 4 ≤ a− 2 ≤ b+
√
(b+ 1)2 − 8(b+ 1) + 4,

noting that if a− 2 being contained in this interval is equivalent to having

(b−1)−
√

(b+ 1)2 − 8(b+ 1) + 4 ≤ a−3 ≤ (b−1)+
√
(b+ 1)2 − 8(b+ 1) + 4,

which we know to be true. We have n+1 = (a−2)+3(b+1) = (a+1)+3b,
and at least one of these eventualities is covered.

The results of this chapter are summarised in the diagram below.

Figure 3.2: Diagram representing the current state of the problem, where
blue boxes represent reducible varieties, red boxes represent reducible vari-
eties, and white boxes represent cases where the problem is still open.
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Chapter 4

Conclusion

To summarise, in Chapter 1 we established Weyr matrices as a canonical
form, and covered their advantageous properties such as the form of their
centraliser and the block shifting effect. Chapter 2 provided an introduction
to the theory of matrix algebras and examined counterexamples which vio-
late certain bounds on their dimensions. An insight into the computational
strategy aiming to quash Gerstenhaber’s problem was also provided. Results
from algebraic geometry required to interface with dimension of matrix al-
gebra problems were developed in Chapter 3, together with an examination
of the current knowledge on the (ir)reducibility of C(k, n).

Throughout, we have seen examples of using Weyr matrices to improve
existing techniques, such as in the proof of Guralnick’s theorem, and to
open up a new avenue of attack for Gerstenhaber’s problem. The little-
known canonical form has been used to give alternative proofs of known
results, such as the equivalence of definitions of k-regularity (Lemma 3.1.7).

In terms of directions for further study, there is certainly potential to
advance the computing strategy outlined in Chapter 2. The authors of [10]
remark that they are ‘not experts in computing’, so ideas for improvements
to the computational approach may come relatively easily to a skilled pro-
grammer. A specific direction in this realm which comes to mind is the
automation of the selection of the parameters determining the frequency of
nonzero entries of generated commuting triples1. On the algebraic geom-
etry side, a paper of Ngo and Šivic [21] connects reducibility of C(3, n) to
reducibility of varieties of tuples of commuting nilpotent matrices, which
may prove a promising approach to closing the current (ir)reducibility gap.

1In an email, Kevin O’Meara remarked that the selection of such parameters requires
skill ‘bordering on that of a concert pianist’ !
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