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Introduction

Given a finite partially-ordered set (or poset), there are multiple methods to
construct a commutative ring with a prime spectrum that is isomorphic to the
poset. Lewis states in [1] that ‘given two posets and an order preserving map be-
tween them, it is natural to ask whether we can find a ring homomorphism which
induces the order preserving map’. In [2], Hochster gives an affirmative answer
to this question, where it is shown that ‘every spectral map of spectral spaces
arises from a ring homomorphism’ ([3], p69), and any order-preserving function
between partially-ordered sets is induced by such a spectral map. Hochster’s
construction is ‘(in his own words) very intricate’ ([3], p5), and so the rings
involved are ‘widely considered to be inaccessible’. In this paper we use a more
straightforward method provided by Fontana in [4] known as the ‘fibre product
of rings’ to construct rings isomorphic to a given poset. Then, given an order-
preserving function, we observe the behaviour of the function on subsets of the
poset. We use this to construct homomorphisms between subrings, combining
them to form a homomorphism which corresponds to said order-preserving func-
tion.

In the first section, we provide an introduction to the relevant concepts from
order theory and list some well-known results regarding prime spectra of rings
and localisations of domains at prime ideals. We proceed to give a ring and ho-
momorphism construction for the case in which we have a 1-dimensonal poset
with a least element in the second section, showing that all order-preserving
functions between such posets can be represented by a homomorphism. Then
in the third section, we consider 1-dimensional posets which may have mul-
tiple minimal elements and show that, provided an order preserving function
meets an additional requirement, we can construct a homomorphism which cor-
responds to it using similar methods as in the ‘least element’ case. In the fourth
section we consider the n-dimensional case, and restrict ourselves to a class of
posets which resemble ‘upside-down trees’. Here we give a ring construction
which provides us with a unique projection map for each element of the poset,
making it straightforward to construct a homomorphism which induces a given
order-preserving function, provided the order-preserving function belongs to a
class of functions which we refer to as ‘layer-compressing’.
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1 Preliminary Material

We state some of the results in this introductory section without proof, given
that proofs can be found in introductory commutative algebra textbooks (such
as [5] or [6]).

1.1 Order Theory

We begin by looking at a concept which generalises equality called the ‘equiva-
lence relation’.

Definition 1.1 (Equivalence Relation). Let ∼ be a binary relation on a set X.
We call ∼ an equivalence relation if it satisfies the following properties:

1. (Reflexivity) if x ∈ X then x ∼ x;

2. (Symmetry) if x, y ∈ X and x ∼ y then y ∼ x;

3. (Transitivity) if x, y, z ∈ X such that x ∼ y and y ∼ z then x ∼ z.

On the other hand, a concept which generalises inequality is the ‘partial order’.

Definition 1.2 (Partial Order and Poset). Let ≤ be a binary relation on a set
W . We call ≤ a partial order if it satisfies the following properties:

1. (Reflexivity) w ∈W then w ≤ w;

2. (Anti-Symmetry) if w1, w2 ∈W with w1 ≤ w2 and w2 ≤ w1 then w1 = w2;

3. (Transitivity) if w1, w2, w3 ∈W with w1 ≤ w2 and w2 ≤ w3 then w1 ≤ w3.

We call (W,≤) a partially ordered set or poset. If the order relation is clear from
context, then we may use W to refer to W equipped with ≤. Given a partial
order ≤ we use w1 < w2 to denote w1 ≤ w2 and w1 6= w2. We refer to a subset
of a poset with the same order relation as a subposet. All posets considered in
this paper are of finite size.

It is worth noting that two elements of a set need not be related by a partial
order - as opposed to a total order, which we define here.

Definition 1.3 (Total Order). Let (W,≤) be a poset. We call ≤ a total order
on W if either w1 ≤ w2 or w2 ≤ w1 for all w1, w2 ∈W , and we say W is totally
ordered.

Definition 1.4. Let W be a poset and w1 ≤ w2 be distinct elements of W . We
say w2 covers w1 if there is no element of W strictly between w1 and w2, that
is, if w1 ≤ w3 and w1 6= w3 then w2 ≤ w3.

Throughout this paper we give visualisations of posets using Hasse diagrams.
These are diagrams of a poset where the elements towards the top are the highest
in the order, and the elements towards the bottom are the lowest in the order,
where elements are connected by a line if one covers the other.
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Example 1.5. Below is a Hasse diagram for the poset W = {w1, w2, w3, w4}
with the order relation

wi ≤ wj ⇐⇒


i = 1 and j = 1, 3, 4, or

i = 2 and j = 2, 3, 4, or

i = 3 and j = 3, 4, or

i = 4 and j = 4.

W

w1 w2

w3

w4

Definition 1.6 (Chain). Given a poset W , a chain is a set of distinct elements
w0, . . . , wn ∈ W such that w0 < w2 < · · · < wn. A chain of n+ 1 elements has
length n.

Definition 1.7 (Dimension of a Poset). Let W be a poset. Then the dimension
of W is the length of the longest chain in W .

Definition 1.8 (Height of an Element). LetW be a poset and w ∈W . Then the
height of w, denoted ht(w), is the length of the longest chain in W terminating
at w.

Definition 1.9. Let W be a poset and let w1 ∈W . Then

� we call w1 a minimal element of W if w ≤ w1 implies w1 = w for all
w ∈W ;

� we call w1 a maximal element of W if w1 ≤ w implies w1 = w for all
w ∈W ;

� we call w1 the least element of W if w1 ≤ w for all w ∈W ;

� we call w1 the greatest element of W if w ≤ w1 for all w ∈W .

A poset may or may not have a least/greatest element, but if such an element
exists then it is unique.
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Example 1.10. Below are two 3-dimensional posets. The poset X has least
element x1 and greatest element x5. The poset Y has no greatest or least
elements, but has minimal elements y1, y2 and maximal elements y6, y7.

X

x1

x2

x3 x4

x5

Y

y1 y2

y3 y4

y5

y6 y7

Definition 1.11 (Disjoint Union of Posets). Let (X,≤X), (Y,≤Y ) be posets.
Then the disjoint union of X and Y , denoted X t Y , is the set X ∪ Y together
with the partial order

w1 ≤XtY w2 ⇐⇒

{
w1, w2 ∈ X and w1 ≤X w2, or

w1, w2 ∈ Y and w1 ≤Y w2.

Definition 1.12 (Order-Preserving Function). Let (W,≤), (W̃ ,v) be posets
and F : W → W̃ a function between them. We say F is order-preserving if
w1 ≤ w2 implies F (w1) v F (w2).

We define an order-reflecting function similarly, where F is order-reflecting if
F (w1) v F (w2) implies w1 ≤ w2.

Definition 1.13 (Order Isomorphism). Let W, W̃ be posets and F : W → W̃
a function between them. If F is bijective, order-preserving and order-reflecting
them we call F an order isomorphism. We call W and W̃ are isomorphic and
denote this W ∼= W̃ .
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Example 1.14. Below is a diagram of functions F : W → X and G : Y → Z.
The function F is order-preserving, but not order-reflecting as F (w1) = x1 ≤
x2 = F (w2). The function G is neither order-preserving, nor order-reflecting.

W

w1 w2

w3

w4

X

x1

x2 x3

x4

F

Y

y1

y2

y3

Z

z1

z2

G
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1.2 Prime Spectrum of a Ring

Basic results and terminology from commutative algebra are assumed to be
known, such as the definition of a ring, (integral) domain, field, homomor-
phism, ideal and prime ideal, as well as the definition of a polynomial ring in
n indeterminates. All rings in this paper are commutative. We let 〈r1, . . . , rn〉
represent the ideal generated by the elements r1, . . . , rn, and the ring which the
ideal is contained in should be deducible from context. The ideal generated by
all elements of the set H is denoted 〈H〉. We use I(R) to denote the set of
ideals of the ring R.

Definition 1.15 (Prime Spectrum). Let R be a ring. Then the prime spectrum
of R, denoted SpecR, is the set of prime ideals of R. We often consider SpecR
together with the partial order ⊆.

Lemma 1.16. Let k be a field. Then Spec k = {〈0〉}.

Proof. The zero ideal is prime in any field, and any non-zero ideal of a field
contains a unit, so is not proper and is therefore not prime.

We will frequently use several results about the ideal structure of product rings.

Lemma 1.17. Let R,S be rings. Then K is an ideal of R × S if and only if
K = I × J for some I ∈ I(R), J ∈ I(S).

Proof. Let K be an ideal of R× S. We define the sets I and J as follows:

I = {r ∈ R : (r, 0) ∈ K} ,
J = {s ∈ S : (0, s) ∈ K} .

We first show that I and J are themselves ideals. Let a ∈ I, r ∈ R. Then
(a, 0) ∈ K and (r, 0) ∈ R × S, so (a, 0) · (r, 0) = (ar, 0) ∈ K. Thus ar ∈ I.
Let a, b ∈ I. Then (a, 0), (b, 0) ∈ K, so (a, 0) + (b, 0) = (a + b, 0) ∈ K. Thus
a + b ∈ I. Therefore I is an ideal of R. To show J is an ideal of S, repeat the
above proof with the first and second elements swapped.
We now claim K = I × J . Let (r, s) ∈ I × J . Then (r, 0), (0, s) ∈ K, so
(r, 0) + (0, s) = (r, s) ∈ K. Hence I × J ⊆ K. Now let (r, s) ∈ K. Since
(1, 0) ∈ R × S, (r, s) · (1, 0) = (r, 0) ∈ K, so r ∈ I. Similarly s ∈ J . Hence
(r, s) ∈ I × J and K ⊆ I × J . Therefore K = I × J .
Suppose I ∈ I(R), J ∈ I(S). Let (a, b), (c, d) ∈ I × J . Then (a, b) + (c, d) =
(a + c, b + d). Since a, c ∈ I we have a + c ∈ I, and similarly b + d ∈ J , so
(a+ c, b+ d) ∈ I × J . Let (a, b) ∈ I × J and (r, s) ∈ R× S. Then (a, b)(r, s) =
(ar, bs). Since ar ∈ I and bs ∈ J we have (ar, bs) ∈ I × J .

Lemma 1.18. Let R,S be rings and K ∈ I(R × S). Then K ∈ SpecR × S if
and only if K = I × S or I = R× J for some I ∈ SpecR, J ∈ SpecS.

Proof. Let K ∈ SpecR. Then by Lemma 1.17, we have K = I × J , where

I = {r ∈ R : (r, 0) ∈ K} ,
J = {s ∈ S : (0, s) ∈ K} .
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Let ab ∈ I. Then (ab, 0) = (a, 0)(b, 0) ∈ K, so either (a, 0) or (b, 0) ∈ K, thus
either a ∈ I or b ∈ I, so I is either a prime ideal or equal to the whole ring. The
same can be said about J . Suppose both I and J are prime ideals. Both are
proper, so there exist a /∈ I and b /∈ J . Thus (a, 0)(0, b) = (0, 0) ∈ I × J , but
neither (a, 0) or (0, b) are elements of I × J . Thus I × J is not a prime ideal, so
exactly one of I and J must be equal to the entire ring.

Now suppose I ∈ SpecR. Then let K = I × S. Let (a, b)(c, d) = (ac, bd) ∈ K.
Then ac ∈ I, so either a ∈ I or c ∈ I. By virtue of (a, b) and (c, d) being
elements of R × S, we have b, d ∈ S. So either (a, b) ∈ K or (c, d) ∈ K. Thus
K is a prime ideal. The proof that R × J is a prime ideal when J ∈ SpecS is
almost identical.

Theorem 1.19. Let R,S be rings. Then SpecR× S ∼= SpecR t SpecS.

Proof. The proof follows from the fact that the function

f : SpecR× S → SpecR t SpecS,

f(I × J) =

{
I if J = S,

J if I = R.

is an order isomorphism.

Lemma 1.20. Let R,S be rings and Φ : R → S be a homomorphism. Then
Φ−1(I) ∈ I(R) for all I ∈ I(S).

Proof. Let I ∈ I(S). Let r1, r2 ∈ Φ−1(I). Then there exist s1, s2 ∈ I such that
Φ(r1) = s1,Φ(r2) = s2. Then s1 + s2 ∈ I and Φ(r1 + r2) = s1 + s2 ∈ I, so
r1 + r2 ∈ Φ−1(I).
Now let r1 ∈ Φ−1(I) and r2 ∈ R. Then there exists s1 ∈ I such that Φ(r1) = s1.
Define s2 = Φ(r2) ∈ S. Then Φ(r1r2) = s1s2 ∈ I, so r1r2 ∈ Φ−1(I). Therefore
Φ−1(I) ∈ I(R).

Theorem 1.21. Let R,S be rings and Φ : R → S be a homomorphism. Then
Φ−1(p) ∈ SpecR for all p ∈ SpecS.

Proof. Let p ∈ SpecS. If 1 ∈ Φ−1(p) then Φ(1) = 1 ∈ p, implying p is not
proper, which is a contradiction. Hence Φ−1(p) is proper. Let r1r2 ∈ Φ−1(p).
Then Φ(r1)Φ(r2) = Φ(r1r2) ∈ p. Since p is prime, either Φ(r1) ∈ p or Φ(r2) ∈ p.
Hence either r1 ∈ Φ−1(p) or r2 ∈ Φ−1(p), meaning Φ−1(p) ∈ SpecR.

This means any homomorphism induces a function between the spectra of its
domain and codomain rings.

Definition 1.22 (‘Spec’ of a Homomorphism). Let R,S be rings and Φ : R→ S
be a homomorphism. Then we define the map Spec Φ as follows:

Spec Φ : SpecS → SpecR,

Spec Φ(p) = Φ−1(p).
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It follows from a property of preimages that p ⊆ q implies Φ−1(p) ⊆ Φ−1(q), so
Spec Φ is always an order-preserving function.
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1.3 Localisation of a Domain

Given a domain R, we can use a process called ‘localisation’ to extend the
domain by introducing inverses of particular elements. Localising a domain
modifies the prime spectrum in a predictable way, which will be useful for our
ring constructions.

Definition 1.23 (Multiplicatively Closed Set). Let R be a ring and S ⊆ R. We
call S a multiplicatively closed subset of R if 1 ∈ S and ab ∈ S for all a, b ∈ S.

Define the set
K =

{r
s

: r ∈ R, s ∈ S
}
.

Definition 1.24 (Equivalence of Fractions). Let a
b ,

c
d ∈ K. We say a

b and c
d

are equivalent fractions if ad = bc.

Lemma 1.25. ‘Equivalence of fractions’ is an equivalence relation on K.

We define S−1R to be the set of equivalence classes of K under equivalence of
fractions. We simply use a

b to refer to the equivalence class of K containing a
b .

Theorem 1.26. Let S be a multiplicatively closed subset of a domain R. Then
S−1R, together with the operations

a

b
+
c

d
=
ad+ bc

bd
,

a

b
· c
d

=
ac

bd
,

forms a ring, known as the localisation of R at S.

Lemma 1.27. Let R be a domain. Let pλ be a set of prime ideals of R with
index set Λ. Then S = R \

⋃
λ∈Λ pλ is a multiplicatively closed set.

Proof. Let S = R\
⋃
λ∈Λ pλ. Then 1 ∈ S as 1 /∈ pλ because pλ is a proper ideal.

Let a, b ∈ S and suppose ab /∈ S. Then ab ∈
⋃
λ∈Λ pλ, so ab ∈ pλ for some

λ ∈ Λ. But pλ is a prime ideal, so either a ∈ pλ or b ∈ pλ. Hence either a /∈ S
or b /∈ S, which is a contradiction.

If S = R \ p then we call S−1R the localisation of R at p, and denote S−1R by
Rp If p1, . . . , pn and S = R \

⋃
λ∈Λ pλ then we denote S−1R by Rp1,...,pn .

The localisation procedure provides us with an inclusion homomorphism i :
R → S−1R, which sends the element r ∈ R to r

1 ∈ S
−1R. It can be useful to

consider R to be a subring of S−1R by identifying r ∈ R with its image r
1 under

i. Hence we can also take ideals of the ring R and consider them as subsets (but
not necessarily ideals) of the ring S−1R. Now we can discuss the ideals of these
new rings.

Lemma 1.28. Let J be a proper ideal of S−1R. Then the set I = J ∩R is an
ideal of R disjoint from S such that 〈I〉 = J , that is, the ideal generated by the
image of I under the inclusion homomorphism i is equal to J .
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Proof. First we show I is an ideal of R. Let a, b ∈ I, r ∈ R. Then a, b ∈ J , so
a+ b ∈ J . Also a+ b ∈ R, so a+ b ∈ J ∩R = I We also have ar ∈ J and ar ∈ R,
so ar ∈ I. Thus I is an ideal of R.
Next, we show I and S are disjoint. Now suppose there exists a ∈ I ∩ S. Then
a ∈ I, so a ∈ J . Then 1 = a

a ∈ J , which is a contradiction as J was assumed to
be proper.
Finally, we show 〈I〉 = J . Let a

b ∈ J . Then a = a
b b ∈ J , so a ∈ I. Then a ∈ 〈I〉,

so a
b ∈ 〈I〉. Now let a

b ∈ 〈I〉. Then we can represent a
b as

a

b
=
∑
λ∈Λ

aλ
rλ
sλ
,

where aλ ∈ I, rλ ∈ R and sλ ∈ S for all λ ∈ Λ. Then aλ ∈ I ⊆ J , so aλ
rλ
sλ
∈ J

for all λ. Hence their sum, a
b , is an element of J . Therefore 〈I〉 = J .

Lemma 1.29. Let p be a prime ideal of S−1R. Then q = p∩R is a prime ideal
of R disjoint from S.

Proof. By Lemma 1.28, q is an ideal of R. If s ∈ q∩S then s ∈ p, so 1 = s
s ∈ p,

which is a contradiction as p is proper. Hence 1 /∈ q as 1 ∈ S, so q is also proper.
Let ab ∈ q. Then ab ∈ p so a ∈ p or b ∈ p. Then since a, b ∈ R, we have a ∈ q
or b ∈ q. Therefore q is a prime ideal.

Lemma 1.30. Let p, q be prime ideals of R disjoint from S. Then 〈p〉 = 〈q〉
implies p = q.

Proof. Suppose p 6= q. We can assume without loss of generality that there
exists a ∈ p \ q. We have a ∈ 〈p〉 = 〈q〉, so we can write

a =
∑
λ∈Λ

aλ
rλ
sλ
,

where aλ ∈ q, rλ ∈ R and sλ ∈ S. Now define

tλ =
∏
µ6=λ

sµ,

t =
∏
λ∈Λ

sµ,

and we have sλ = t
tλ

. Then we can write

a =
1

t

∑
λ∈Λ

aλrλtλ,

and we have at ∈ q. Since q is prime, either a ∈ q or t ∈ q. But t ∈ S, so we
must have a ∈ q, which is a contradiction.

Lemma 1.31. If p is a prime ideal of R disjoint from S, then p = 〈p〉 ∩R.
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Proof. Let a ∈ p. Then a ∈ R and a ∈ 〈p〉, so a ∈ 〈p〉 ∩R. Now let a ∈ 〈p〉 ∩R.
Then by similar arguments to the previous proof, we have at ∈ p for some t ∈ S.
Then since p is prime, either a ∈ p or t ∈ p. Since p is disjoint from S, we have
a ∈ p, so p = 〈p〉 ∩R.

Lemma 1.32. If the ideal p of R is prime and disjoint from S then 〈p〉 is prime.

Proof. Let p be prime and disjoint from S. Suppose 1 ∈ 〈p〉. Then by similar
arguments to the previous proof, there exists 1 · t ∈ p, which is a contradiction
as we assumed p to be disjoint from S. Now let a

b
c
d ∈ 〈p〉. Then ac ∈ 〈p〉, and

by similar arguments to the previous proof, we have that act ∈ p for t ∈ S.
Then either ac ∈ p or t ∈ p, but t ∈ p contradicts an assumption, so ac ∈ p.
Then either a ∈ p or c ∈ p, so either a

b ∈ 〈p〉 or c
d ∈ 〈p〉. Hence 〈p〉 is prime.

Proposition 1.33. There is a bijection between the prime ideals of S−1R and
the prime ideals of R which are disjoint from S.

Proof. Let K = {p ∈ SpecR : p ∩ S = ∅}. The function

f : K → SpecS−1R,

f(p) = 〈p〉

is well-defined by Lemma 1.32, surjective by Lemma 1.28 together with Lemma 1.29,
and injective by Lemma 1.29.

Lemma 1.34. Let p, q ∈ SpecR be disjoint from S. Then p ⊆ q if and only if
〈p〉 ⊆ 〈q〉.

Proof. Assume p ⊆ q. Let a
b ∈ 〈p〉. Then a ∈ 〈p〉, and since a ∈ R we have

a ∈ 〈p〉 ∩ R = p ⊆ q. Then a
b ∈ 〈q〉. Now assume 〈p〉 ⊆ 〈q〉. Let a ∈ p. Then

a ∈ 〈p〉 ⊆ 〈q〉. Since a ∈ 〈q〉 and a ∈ R, we have a ∈ 〈q〉 ∩R = q.

13



2 1-Dimensional Posets with a Least Element

This ring construction is remarkably simple, as the ability to localise domains
quickly provides us with a ring having spectrum isomorphic to a given 1-
dimensional poset with a least element. We show later that any order-preserving
function between such posets is induced by an evaluation homomorphism.

Before beginning the ring construction, we show that all 1-dimensional posets
with a least element can be categorised based on the number of elements they
contain.

Lemma 2.1. All finite 1-dimensional posets (X,≤) of size n + 1 with a least
element are of the form

X = {x0, . . . , xn} ,
xi ≤ xj ⇐⇒ i = 0 or i = j.

Proof. Let Y be a 1-dimensional poset of size n+ 1 with a least element. Let y0

be the least element of Y and denote the remaining elements y1, . . . , yn in any
arbitrary manner. We claim that the function

ω : X → Y,

ω(xi) = yi,

is an order isomorphism. It is bijective as it is a surjection between two sets of
the same size, but it remains to be shown that it preserves and reflects order.
Assume xi ≤ xj . Then i = 0 or i = j. If i = 0 then ω(xi) = y0 and ω(xj) = yj ,
and as y0 is the least element of Y , we have y0 ≤ yj . If i = j then ω(xi) = ω(xj),
so ω(xi) ≤ ω(xj). Therefore ω is order preserving.
Now suppose ω(xi) ≤ ω(xj). If ω(xi) = y0 then xi = x0 ≤ xj . If ω(xi) 6= y0

and i 6= j then there exists a chain y0 < ω(xi) < ω(xj) of length 2, which is a
contradiction as we assumed Y was 1-dimensional. Thus i = j meaning xi ≤ xj .
Thus ω is order-reflecting, and is therefore an order isomorphism.

2.1 Ring Construction

When we refer to a polynomial ring over k, then k is some arbitrary field.

Lemma 2.2. The ideal 〈Xi〉 is prime in k[X1, . . . , Xn].

Proof. The proof follows from the fact that

φ : k[X1, . . . , Xn]→ k[Y1, . . . , Yn−1],

φ(f(X1, . . . , Xn)) = f(Y1, . . . , Yi−1, 0, Yi, . . . , Yn−1),

is a surjective homomorphism with kernel 〈Xi〉, so

k[X1, . . . , Xn]/ 〈Xi〉 ∼= k[Y1, . . . , Yn−1].

Because k[Y1, . . . , Yn−1] is a domain, 〈Xi〉 is prime.

14



Lemma 2.3. All ideals 〈Xi〉 have height 1 in Spec k[X1, . . . , Xn].

Proof. Note that k[X1, . . . , Xn] is a domain, so 〈0〉 ∈ Spec k[X1, . . . , Xn]. We
have 〈0〉 ⊂ 〈Xi〉, so ht 〈Xi〉 ≥ 1. If ht 〈Xi〉 > 1 then there exists p ∈ k[X1, . . . , Xn]
such that 〈0〉 ⊂ p ⊂ 〈Xi〉. Let f ∈ p ⊆ 〈X1〉 be non-zero and suppose f is of
degree n. Then f = Xif1 for some f1 ∈ k[X1, . . . , Xn]. Then as p is prime,
either f1 ∈ p or Xi ∈ p. If Xi ∈ p then 〈Xi〉 = p, so assume f1 ∈ p. We
can repeat this argument to find fn ∈ k[X1, . . . , Xn] such that f = Xn+1

i fn+1,
which is a contradiction as f is of degree n. Therefore no such ideal exists, so
ht 〈Xi〉 = 1.

Theorem 2.4. Spec k[X1, . . . , Xn]〈X1〉,...,〈Xn〉 = {〈0〉 , 〈X1〉 , . . . , 〈Xn〉}.

Proof. The zero ideal is prime as k[X1, . . . , Xn] is a domain. By Lemma 2.2
〈Xi〉 are prime ideals of k[X1, . . . , Xn]. Let S = R \

⋃n
i=1 〈Xi〉 and let R =

S−1k[X1, . . . , Xn]. Then 〈0〉 and 〈Xi〉 are disjoint from S, so by Lemma 1.32,
all specified ideals are prime in R. It remains to be shown that there are no
more prime ideals of R. We can do this by showing that there are no more
prime ideals of k[X1, . . . , Xn] disjoint from S. Suppose p is such an ideal. Then
p ∩ S = ∅, so p ⊆

⋃n
i=1 〈Xi〉. Then by the prime avoidance theorem ([5] 3.61),

p ⊆ 〈Xi〉 for some i. Then, since 〈Xi〉 has height 1 in Spec k[X1, . . . , Xn], we
must have p = 〈0〉 or p = 〈Xi〉.

Proposition 2.5. Let W be a 1-dimensional poset with n + 1 elements and a
least element. Then W ∼= Spec k[X1, . . . , Xn]〈X1〉,...,〈Xn〉.

Proof. By Theorem 2.4, Spec k[X1, . . . , Xn]〈X1〉,...,〈Xn〉 is a poset with n + 1
elements. Also Lemma 2.3 tells us that Spec k[X1, . . . , Xn]〈X1〉,...,〈Xn〉 is 1-
dimensional and has least element 〈0〉, so the proof follows directly from Lemma 2.1.

Theorem 2.6. Let W be a 1-dimensional poset with n+ 1 elements and a least
element and let m ∈ N0. Then W ∼= Spec k[X1, . . . , Xn+m]〈X1〉,...,〈Xn〉.

Proof. Let

R = k[X1, . . . , Xn+m],

S = R \
n⋃
i=1

〈Xi〉 ,

T = R \
n+m⋃
i=1

〈Xi〉 .

Suppose 〈p〉 ∈ SpecS−1R. Then p ∩ S = ∅, and as T ⊆ S, we also have
p ∩ T = ∅, so 〈p〉 is a prime ideal of T−1R by Lemma 1.32. We know from
Theorem 2.4 that the prime ideals of T−1R are 〈0〉 , 〈X1〉 , . . . , 〈Xn+m〉, so we
need only check these. The ideals 〈0〉 , 〈X1〉 , . . . , 〈Xn〉 are prime in R and
disjoint from S, so by Lemma 1.32 they are prime in S−1R, but the ideals
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〈Xn+1〉 , . . . , 〈Xn+m〉 are not disjoint from S, so cannot be prime in S−1R. Since
Spec k[X1, . . . , Xn+m]〈X1〉,...,〈Xn〉

∼= Spec k[X1, . . . , Xn]〈X1〉,...,〈Xn〉, the proof fol-
lows directly from Proposition 2.5.

In other words, this gives us the ability to add ‘throw-away’ units to our rings
whilst preserving the structure of the prime spectrum. This will come in handy
when considering homomorphisms, allowing us to divert elements of the input
ring to a place where they will not interfere with the preimages of prime ideals.

Example 2.7. The poset W as shown below has is 1-dimensional, has 4 ele-
ments and least element w1, so

W ∼= Spec k[X1, X2, X3]〈X1〉,〈X2〉,〈X3〉.

In fact W ∼= Spec k[X1, . . . , Xm]〈X1〉,〈X2〉,〈X3〉 for all m ≥ 3.

W

w1

w2 w3 w4
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2.2 Homomorphism Construction

To know if our construction is valid, we need a formal way of verifying if Spec Φ
behaves in the same way as a given order-preserving function.

Definition 2.8 (Isomorphism of Functions). Let W,X, Y, Z be posets and
F : W → X,G : Y → Z order-preserving functions. If there exist order
isomorphisms ω : W → Y and χ : X → Z such that

F (w) = χ−1 ◦G ◦ ω(w)

for all w ∈W , then we say F is isomorphic to G.

Isomorphism of functions defines an equivalence relation on the set of order-
preserving functions from a poset isomorphic to W to a poset isomorphic to X.

The homomorphism we intend to construct essentially corresponds to an evalu-
ation homomorphism, which we define here.

Definition 2.9 (Evaluation Homomorphism[1]). Let R ⊆ S be rings and let
ñ ∈ N. Then given any collection s1, . . . , sñ ∈ S, the unique homomorphism

Ψ : R[X1, . . . , Xñ]→ S,

Ψ(r) = r for all r ∈ R,
Ψ(f(X1, . . . , Xñ)) = f(s1, . . . , sñ),

is known as the evaluation homomorphism (or simply evaluation) at s1, . . . , sñ.

Our aim is to show that our evaluation homomorphism Ψ : k[X1, . . . , Xñ]→ D
can be extended to a homomorphism Φ : D̃ → D. To do this we use a property
commonly known as the ‘universal property of localisation’.

Proposition 2.10 (Universal Property of Localisation[2]). Let S be a multi-
plicatively closed subset of a ring R; also let i : R→ S−1R denote the inclusion
homomorphism

(
i(r) = r

1

)
. Let R′ be a second ring, and let Ψ : R → R′ be a

homomorphism with the property that Ψ(s) is a unit of R′ for all s ∈ S. Then
there is a unique homomorphism Φ : S−1R→ R′ such that Φ ◦ f = Ψ. In fact,
Φ is such that

Φ
(r
s

)
=

Ψ(r)

Ψ(s)
.

To make it easier to show that an evaulation Ψ sends elements of S to units of
D, we give some results about ‘algebraic independence’.

Definition 2.11 (Algebraic Independence[3]). Let S = {si}ni=1 be a family
of elements of a ring R. Let R0 be a subring of R. Then S is algebraically
independent over R0 if, given f(X1, . . . , Xn) ∈ R0[X1, . . . , Xn], the property

f(s1, . . . , sn) = 0 =⇒ f is the zero polynomial,

[1]This is based on [5], Definition 1.17, but is adapted for our purposes.
[2][5], Proposition 5.10.
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is satisfied. In other words, S is algebraically independent over R0 if the kernel
of the evaluation Ψ : R0[X1, . . . , Xn]→ R at s1, . . . , sn is the zero ideal.

It is worth noting that indeterminates in a ring necessarily form an algebraically
independent set.

Lemma 2.12. Let S = {s1, . . . , sn} be algebraically independent over a field k.
Then S′ = {s1, . . . , sn−1} is algebraically independent over k.

Proof. Suppose S′ is not algebraically independent over k. Then there exists
f ∈ k[X1, . . . , Xn−1] such that f(s1, . . . , sn−1) = 0. But then g(X1, . . . , Xn) =
f(X1, . . . , Xn−1) is such that g(s1, . . . , sn) = 0, meaning S is not algebraically
independent over k, which is a contradiction.

Lemma 2.13. Let S = {s1, . . . , sn} be algebraically independent over a field k.
Then S′ = {s1, . . . , sn−2, sn−1sn} is algebraically independent over k.

Proof. Suppose S′ is not algebraically independent over k. Then there exists
some non-zero polynomial f ∈ k[X1, . . . , Xn−1], which we can write as

f(X1, . . . , Xn−1) =
∑
λ∈Λ

rλX
λ1
1 · · ·X

λn−1

n−1 ,

such that f(s1, . . . , sn−2, sn−1sn) = 0. Then the polynomial

g(X1, . . . , Xn) =
∑
λ∈Λ

rλX
λ1
1 · · ·X

λn−1

n−1 X
λn−1
n ,

is such that g(s1, . . . , sn) = 0, which is a contradiction as S is algebraically
independent over k.

Lemma 2.14. Let n, ñ ∈ N. If we have a family of pairwise disjoint sets
{Hi}ñi=1 where Hi ⊆ {1, . . . , n} for all i, then the function

η : {X1, . . . , Xñ} → k[Y1, . . . , Yn+ñ],

η(Xi) =

{∏
j∈Hi Yj if Hi is non-empty,

Yn+i otherwise,

gives rise to a set {η(Xi)}ñi=1 which is algebraically independent over k.

Proof. Because the Hi are disjoint, each indeterminate Yj divides at most one
η(Xi). Thus the proof follows from the repeated application of Lemma 2.12 and
Lemma 2.13.

Theorem 2.15. Let F : W → W̃ be an order-preserving function between 1-
dimensional posets with least elements. If F maps the least element of W to the
least element of W̃ then there exist rings D, D̃ and a homomorphism Φ : D̃ → D
such that W ∼= SpecD, W̃ ∼= Spec D̃ and Spec Φ is isomorphic to to F .

[3]Likewise this is based on [5], Definition 1.14.
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Proof. SupposeW has n+1 elements and W̃ has ñ+1 elements. By Theorem 2.6,
the rings

D = k[Y1, . . . , Yn+ñ]〈Y1〉,...,〈Yn〉,

D̃ = k[X1, . . . , Xñ]〈X1〉,...,〈Xñ〉

are such that W ∼= SpecD and W̃ ∼= Spec D̃. Let w0 and w̃0 denote the minimal
elements of W and W̃ respectively and arbitrarily label the remaining elements
of each poset w1, . . . , wn and w̃1, . . . , w̃ñ. We have order isomorphisms

δ(wi) =

{
〈0〉 if i = 0,

〈Yi〉 otherwise,
δ̃(w̃i) =

{
〈0〉 if i = 0,

〈Xi〉 otherwise.

We introduce the family of sets {Hi}ñi=1, where

Hi = {j ∈ N : F (wj) = w̃i} .

The Hi are pairwise disjoint, so we can use them to define the function η from
Lemma 2.14.

Let Ψ : k[X1, . . . , Xñ] → k[Y1, . . . , Yn+ñ]〈Y1〉,...,〈Yn〉 be the evaluation homo-

morphism at η(X1), . . . , η(Xñ). Let g ∈ S = R \
⋃ñ
i=1 〈Xi〉 and suppose Ψ(g) is

a non-unit. Then either Ψ(g) = 0 or Ψ(g) ∈ 〈Yi〉 for some i ∈ {1, . . . , n}. Since
η(Y1), . . . , η(Xñ) are algebraically independent over k, Ψ(g) = 0 implies g is the
zero polynomial and hence a non-unit. If Ψ(g) ∈ 〈Yi〉 then Ψ(g) = g′Yi for some
g′ ∈ k[Y1, . . . , Yn+ñ]. Hence we must have some Xj such that Yi | η(Xj) and
Xj | g. Then g ∈ 〈Xj〉 so g /∈ S. Thus by the universal property of localisation,
we have that

Φ : D̃ → D,

Φ

(
f

g

)
=

Ψ(f)

Ψ(g)
,

is a well-defined homomorphism.

Finally, we show that Φ is isomorphic to F . Let f
g ∈ Φ−1(〈0〉). Then Ψ(f)

Ψ(g) = 0,

and in particular Ψ(f) = 0. Since f is the evaluation at an algebraically inde-
pendent set, this implies f is the zero polynomial, so f

g = 0, meaning Φ−1(〈0〉) =

〈0〉. Now consider Φ−1(〈Yi〉). Let w̃j = F (wi). Then i ∈ Hj , so Yi | η(Xj).

Thus Φ(Xj) = η(Xj) ∈ 〈Yi〉, so Xj ∈ Φ−1(〈Yi〉). The only prime ideal of D̃ that
contains Xj is 〈Xj〉, so F (wi) = w̃j implies Φ−1(〈Yi〉) = 〈Xj〉. Now suppose
F (wi) = w̃0. Suppose 〈Xj〉 = Φ−1(〈Yi〉). Then Φ(Xj) = η(Xj) ∈ 〈Yi〉, but
Yi - η(Xj) as i /∈ Hj for all j. Therefore Φ−1(〈Yi〉) = 〈0〉.
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Example 2.16. Let F : W → W̃ be the order-preserving function pictured
below.

W

w0

w1 w2 w3

W̃

w̃0

w̃1 w̃2 w̃3 w̃4

F

As we can see, W has 4 elements and W̃ has 5, so

W ∼= Spec k[Y1, . . . , Y7]〈Y1〉,...,〈Y3〉, W̃ ∼= k[X1, . . . , X4]〈X1〉,...〈X4〉.

We have the sets

H1 = {1} , H2 = {2, 3} , H3 = H4 = ∅,

which induce the function

η : {X1, . . . , X4} → k[Y1, . . . , Y7],

η(Xi) =


Y1 if i = 1,

Y2Y3 if i = 2,

Y6 if i = 3,

Y7 if i = 4.

Then the homomorphism

Φ : k[X1, . . . , X4]〈X1〉,...,〈X4〉 → k[Y1, . . . , Y7]〈Y1〉,...,〈Y3〉,

Φ

(
f(X1, X2, X3, X4)

g(X1, X2, X3, X4)

)
=
f(Y1, Y2Y3, Y6, Y7)

g(Y1, Y2Y3, Y6, Y7)
,

induces the order-preserving function Spec Φ which is isomorphic to F .
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Example 2.17. We will repeat the process for the order-preserving function
G : W → W̃ pictured below.

W

w0

w1 w2 w3

W̃

w̃0

w̃1 w̃2

G

We have

W ∼= Spec k[Y1, . . . , Y5]〈Y1〉,...,〈Y3〉, W̃ ∼= Spec k[X1, X2]〈X1〉,〈X2〉.

Then we have the sets
H1 = {1} , H2 = {2} .

These sets induce the function

η : {X1, X2} → k[Y1, . . . , Y5],

η(Xi) =

{
Y1 if i = 1,

Y2 if i = 2.

Then the homomorphism

Φ : k[X1, X2]〈X1〉,〈X2〉 → k[Y1, . . . , Y5]〈Y1〉,...,〈Y3〉,

Φ

(
f(X1, X2)

g(X1, X2)

)
=
f(Y1, Y2)

g(Y1, Y2)
,

is such that Spec Φ is isomorphic to G.
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Some order-preserving functions do not send the least element of their domain
to the least element of their codomain. We give an alternative construction in
this case.

Theorem 2.18. Let F : W → W̃ be an order-preserving function between
1-dimensional posets with least elements. Then there exist rings D, D̃ and a
homomorphism Φ : D̃ → D such that W ∼= SpecD, W̃ ∼= Spec D̃ and Spec Φ is
isomorphic to F .

Proof. Let D, D̃, δ, δ̃ be as defined in the previous proof. If F sends the least
element of W to the least element of W̃ then the result is proven by Theo-
rem 2.15, so we assume this is not the case. Then for F to be order-preserving,
all elements of W must be sent to the same element of W̃ . Call this element
w̃j . Let Ψ : k[X1, . . . , Xñ] → k[Y1, . . . , Yn+ñ]〈Y1〉,...,〈Yn〉 be the evaluation at

Yn+1, . . . , Yn+j−1, 0, Yn+j+1, . . . , Yn+ñ. Let g ∈ S = R \
⋃ñ
i=1 and suppose Ψ(g)

is a non-unit. Any non-zero polynomial in indeterminates Yn+1, . . . , Yn+j−1,
Yn+j+1, . . . , Yn+ñ is a unit of D, so Ψ(g) can only be a non-unit of D if Ψ(g) = 0.
The kernel of Ψ is 〈Xj〉, so Ψ(g) = 0 implies g ∈ 〈Xj〉, in which case g /∈ S.
Therefore by the universal property of localisation, the function

Φ : D̃ → D,

Φ

(
f

g

)
=

Ψ(f)

Ψ(g)
,

is a well-defined ring homomorphism.

Finally, we show Φ is isomorphic to F . This is equivalent to showing that
Φ−1(p) = 〈Xj〉 for all p ∈ SpecD. Since 0 ∈ p for each p ∈ SpecD and

Φ(Xj) = 0, we have that Xj ∈ Φ−1(p). The only prime ideal of D̃ that contains
Xj is 〈Xj〉, so Φ−1(p) = 〈Xj〉.
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Example 2.19. Let F : W → W̃ be the order-preserving function pictured
below.

W

w0

w1 w2

W̃

w̃0

w̃1 w̃2 w̃3

F

We have F (wi) = w̃1 for all i, so the homomorphism

Φ : k[X1, X2, X3]〈X1〉,〈X2〉,〈X3〉 → k[Y1, . . . , Y5]〈Y1〉,〈Y2〉

Φ

(
f(X1, X2, X3)

g(X1, X2, X3)

)
=
f(0, Y4, Y5)

g(0, Y4, Y5)

induces the function Spec Φ which is isomorphic to F .
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3 1-Dimensional Posets With Multple Minimal
Elements

In this section we split our poset into subposets with least elements, which we
can reunite using the ‘amalgamated sum’. Using results from the last section,
we can find rings isomorphic to these subposets, and connect their spectra us-
ing an operation called the ‘fibre product’ which, by a theorem of Fontana,
works analagously to the amalgamated sum, producing a ring with spectrum
isomorphic to our original poset.

3.1 Poset Construction

Definition 3.1 (Upper Closure). Let W be a poset and w ∈ W . Then we
define the upper closure of w, denoted w↑, to be the set of elements greater than
or equal to w in the order. That is,

w↑ = {w′ ∈W : w ≤ w′} .

Similarly if X ⊆W then the upper closure of X, denoted X↑, is defined as

X↑ = {w ∈W : x ≤ w for some x ∈ X} .

Let X ⊆ W . We say X is up-closed if X = X↑. Recall that we call a function
g : Z → Y an order-isomorphism if it is bijective and w1 ≤ w2 if and only if
g(w1) v g(w2). However, if g has the order-preserving and reflecting properties
of an order-isomorphism but is only injective rather than bijective, then we call
g an order-embedding. Furthermore, we call g a closed embedding if g(Z) is an
up-closed subset of Y .

Definition 3.2 (Amalgamated Sum). Let (X,≤X), (Y,≤Y ) and Z ⊆ Y be
posets and f : Z → X, g : Z → Y order-preserving functions, where g is
a closed embedding. Then the amalgamated sum of X and Y over f and g,
denoted X tZ Y , is the poset X t (Y \ Z) with the order relation

w1 ≤ w2 ⇐⇒ w1, w2 ∈ X and w1 ≤X w2, or

w1, w2 ∈ Y \ Z and w1 ≤Y w2, or

w1 ∈ Y \ Z,w2 ∈ X and ∃ z ∈ Z s.t. w1 ≤Y g(z) and f(z) ≤X w2.

For the rest of this section, let W be a 1-dimensional poset with l minimal ele-
ments. Our aim is to use properties of W to construct posets X,Y and Z, and
then connect these via the amalgamated sum to form a poset isomorphic to W .

We let w1, . . . , wl denote the minimal elements of W , and apply some arbi-
trary labelling wl+1, . . . , w|W | to the remaining elements of W . We define the
poset

Vi =
{
vi,0, . . . , vi,|w↑i |−1

}
,
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with the order relation

vi,j ≤ vi,k ⇐⇒ j = 0 or j = k.

Then Vi is a 1-dimensional poset with least element v0 and
∣∣∣w↑i ∣∣∣ elements. The

same is true for w↑i , so Vi ∼= w↑i . We let µi : Vi → w↑i be an order isomorphism
and let

Y = V1 t · · · t Vl.

We define the function

µ : Y →W,

µ(vi,j) = µi(vi,j),

which is order-preserving and surjective, but not necessarily injective or order-
reflecting.
Some elements of W are contained in multiple sets w↑i , and our aim is to join
these elements together to re-form W . Hence, we represent the set of ‘joined’
maximals of W as

J(W ) =
⋃
i 6=j

w↑i ∩ w
↑
j .

Now we let M(W ) be a set such that

� J(W ) ⊆M(W ) ⊂W , and

� every element of M(W ) is a maximal element of W .

We can restrict the set M(W ) to w↑i as follows:

M(w↑i ) = M(W ) ∩ w↑i .

We let
Z = {vi,j ∈ Y : µi(vi,j) ∈M(W )} .

Lemma 3.3. The poset W can be partitioned into subsets M(W ) and w↑i \
M(w↑i ) for i ∈ {1, . . . , l}.

Proof. We have M(W )∩(w↑i \M(w↑i )) = ∅ by definition and w ∈ (w↑i \M(w↑i ))∩
(w↑j \M(w↑j )) for i 6= j implies w ∈ w↑i ∩w

↑
j ⊆M(W ), which is a contradiction.

Corollary 3.4. The surjective restriction of µi to Vi\Z is an order isomorphism

from Vi \ Z to w↑i \M(w↑i ).

Corollary 3.5. The surjective restriction of µ to Y \Z is an order isomorphism
from Y \ Z to W \M(W ).
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Now let X =
{
x1, . . . , x|M(W )|

}
be a 0-dimensional poset (i.e. xi ≤ xj ⇐⇒

i = j). Since M(W ) contains only maximal elements of W , it is also a 0-
dimensional poset. Since X and M(W ) contain the same number of elements,
they are isomorphic, so let τ : X → M(W ) be an order isomorphism. Now
define the function

f : Z → X,

f(vi,j) = τ−1 ◦ µ(vi,j).

This function is well-defined by definition of Z, as vi,j ∈ Z implies µi(vi,j) ∈
M(W ). Let g : Z → Y be the inclusion function, which is an embedding by
definition, and is a closed embedding as all elements of Z are maximal elements
of Y . Now we are able to state the following theorem.

Theorem 3.6. W ∼= X tZ Y .

Proof. We claim that the function

ω : W → X tZ Y,

ω(wj) =

{
τ−1(wj) if wj ∈M(W ),

µ−1(wj) if wj ∈W \M(W ),

is an order isomorphism. By Lemma 3.3, W can be partitioned into these dif-
ferent subsets, on which the functions τ−1 and µ−1 are bijective. Hence ω is
itself bijective.

Suppose wk ≤ wl. If wk, wl ∈ M(W ) or wk, wl ∈ W \M(W ) then ω(wk) ≤
ω(wl). Suppose wk ∈ M(W ) and wl ∈ W \M(W ). Then wk is maximal, so
wk = wl, which is a contradiction. Suppose wk ∈ W \M(W ), wl ∈ M(W ).

We have wk ∈ w↑i \M(w↑i ) for some i ∈ {1, . . . , l}, and also wi ≤ wk ≤ wl,

so wl ∈ M(w↑i ). Let z = µ−1
i (wl). Then f(z) = τ−1(wl) = ω(wl) and

g(z) = µ−1
i (wl) ≥ µ−1

i (wk) = ω(wk), so ω(wk) ≤ ω(wl).

Now suppose ω(wk) ≤ ω(wl). If ω(wk), ω(wl) ∈ X or ω(wk), ω(wl) ∈ Y \ Z
then wk ≤ wl, so assume ω(wk) ∈ Y \ Z, ω(wl) ∈ X and there exists z ∈ Z
such that ω(wk) ≤ g(z) and f(z) ≤ ω(wl). Because g is the inclusion function,
we have ω(wk) ≤ z, and since X is 0-dimensional we have f(z) = ω(wl). Thus
f(z) = τ−1(wl), so µ(z) = wl. We have µ−1(wk) = ω(wk) ≤ z = µ−1(wl), and
therefore µ−1

i (wk) ≤ zµ−1
i (wl) for some i, so it follows from the order reflecting

properties of µ that wk ≤ wl, so ω is an order isomorphism.
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Example 3.7. Let W be the poset below.

W

w1 w2

w3 w4 w5

Then V1 and V2 are as pictured below.

V1

v1,0

v1,1 v1,2

V2

v2,0

v2,1 v2,2 v2,3

We have J(W ) = {w3, w4}. We define the functions

µ1(v1,i) =


w1 if i = 0,

w3 if i = 1,

w4 if i = 2,

µ2(v1,i) =


w2 if i = 0,

w3 if i = 1,

w4 if i = 2,

w5 if i = 3,

We have Z = {v1,1, v1,2, v2,1, v2,2} and X = {x1, x2} with τ(x1) = w3, τ(x2) =
w4. Then the functions f and g are as pictured on the next page.
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Y

v1,0

v1,1 v1,2

v2,0

v2,1 v2,2 v2,3

Z v1,1 v1,2 v2,1 v2,2

X x1 x2

f

g
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3.2 Ring Construction

In devising our ring analogue, we use an operation known as the ‘fibre product
of rings’.

Definition 3.8 (Fibre Product). Let A,B,C be rings and φ : A→ C,ψ : B →
C be homomorphisms. Then the fibre product of A and B over C, denoted
A×C B, is defined as

A×C B = {(a, b) ∈ A×B : φ(a) = ψ(b)} .

A theorem of Fontana found in [4] formalises the way in which the fibre product
works analagously to the amalgamated sum.

Theorem 3.9 (Fontana’s Theorem). Let X,Y, Z be posets and f : Z → X, g :
Z → Y be functions where g is a closed embedding. Let A,B,C be rings and
φ : A → C,ψ : B → C be homomorphisms where ψ is surjective. If α : X →
SpecA and β : Y → SpecB are order isomorphisms and Z ∼= SpecC, and
Specφ, Specψ are isomorphic to f, g respectively, then the function

χ : X tZ Y → SpecA×C B,

χ(w) =

{
p−1
A ◦ α(w) if w ∈ X,
p−1
B ◦ β(w) if w ∈ Y \ Z,

is an order isomorphism, where pA : A ×C B → A, pB : A ×C B → B are
projection maps. Furthermore, if w ∈ Z, then

p−1
A ◦ α ◦ f(z) = p−1

B ◦ β ◦ g(z).

For i = 1, . . . , l, let Bi be a ring such that SpecBi ∼= Vi. Such a ring exists
by Theorem 2.6, and in fact we have an infinite family of rings to choose from.
Then define the family of sets

Hi = {j ∈ N : vi,j ∈ Z} .

These sets codify the way in which we will ‘join’ the rings. Since each Hi is
finite, we order the elements from 1 to |Hi| and use hi(j) to denote the jth
element of Hi. Then we define the ring

Ci = Bi/
〈
Xhi(1)

〉
× · · · ×Bi/

〈
Xhi(|Hi|)

〉
.

Then the required rings are

A =

|X| times︷ ︸︸ ︷
k × · · · × k,

B = B1 × · · · ×Bl,
C = C1 × · · · × Cl.
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Lemma 3.10. Let X,Y, Z be as defined in this section’s poset construction.
Then X ∼= SpecA, Y ∼= SpecB and Z ∼= SpecC.

Proof. The function

α : X → SpecA,

α(xi) = R1 × · · · ×

ith place︷︸︸︷
〈0〉 × · · · ×R|W |,

is an order isomorphism, as it is a bijection between two 0-dimensional posets.
We have Vi ∼= SpecBi for all i, so

Y = V1 t · · · t Vl ∼= SpecB1 × · · · ×Bl

by Theorem 1.19. In particular, the function

β : Y → SpecB,

β(vi,j) =


B1 × · · · ×

ith place︷︸︸︷
〈0〉 × · · · ×Bl if j = 0,

B1 × · · · ×

ith place︷︸︸︷
〈Xj〉 × · · · ×Bl if j 6= 0,

,

is an order isomorphism. By definition of Hi, we have |Z| =
∑l
i=1, so Z ∼=

SpecC as C is the product of |Z| fields. The function

γ : Z → SpecC,

γ(vi,j) = C1 × · · · ×

ith place︷ ︸︸ ︷
〈1〉 × · · · × 〈0〉︸︷︷︸

kth place

× · · · × 〈1〉× · · · × Cl,where hi(k) = j

is bijective, and is therefore an order isomorphism.

The homomorphisms φ and ψ that we will use for the fibre product require
some results relating to homomorphisms of product rings. The proof that the
following lemmas define valid homomorphisms only requires checking that the
definition of a homomorphism holds (which can be done in the standard way).

Lemma 3.11. Let φi : R → Si be a homomorphism for i ∈ {1, . . . , n}. Then
the function

φ : R→ S1 × · · · × Sn,
φ(r) = (φ1(r), . . . , φn(r)),

is a homomorphism.
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Lemma 3.12. Let σ : {1, . . . , n} → {1, . . . ,m} and let φi : Rσ(i) → Si be a
homomorphism for i ∈ {1, . . . , n}. Then the function

φ : R1 × · · · ×Rm → S1 × · · · × Sn,
φ(r1, . . . , rm) = (φ1(rσ(1)), . . . , φn(rσ(n))),

is a homomorphism.

Lemma 3.13. Let X,Y, Z, f, g be as defined in this section’s poset construction.
Then there exist homomorphisms φ : A→ C,ψ : B → C such that Specφ,Specψ
are isomorphic to f and g respectively.

Proof. Define the function

ρ(i, j) = k ⇐⇒ f(vi,j) = xk.

Now define the homomorphisms

φi : A→ Ci,

φi(a1, . . . , a|X|) =
(
aρ(i,hi(1)) +

〈
Xhi(1)

〉
, . . . , aρ(i,hi(|Hi|)) +

〈
Xhi(|Hi|)

〉)
,

φ : A→ Ci,

φ(a1, . . . , a|X|) = (φ1(a1, . . . , a|X|), · · · , φl(a1, . . . , a|X|)).

The function φ is a homomorphism by Lemma 3.11, and we claim that Specφ
is isomorphic to f . We must show that α ◦ f(vi,j) = φ−1 ◦ γ(vi,j). We have
f(vi,j) = xρ(i,j), so we must show that φ−1 ◦ γ(vi,j) = α(xρ(i,j)). We have

γ(vi,j) = C1 × · · · ×

ith place︷ ︸︸ ︷
〈1〉 × · · · × 〈0〉︸︷︷︸

kth place

× · · · × 〈1〉× · · · × Cl,where hi(k) = j.

Suppose (a1, . . . , a|X|) ∈ φ−1 ◦ γ(vi,j). Then

φi(a1, . . . , a|X|)

= (aρ(i,hi(1)) +
〈
Xhi(1)

〉
, . . . , aρ(i,hi(k)) +

〈
Xhi(k)

〉
, . . . , aρ(i,hi(|Hi|)) +

〈
Xhi(|Hi|)

〉
)

∈ 〈1〉 × · · · 〈0〉︸︷︷︸
kth place

× · · · × 〈1〉 ,

so aρ(i,hi(k)) ∈
〈
Xhi(k)

〉
, meaning aρ(i,hi(k)) = 0. Note that

r = (1, . . . ,

lth place︷︸︸︷
0 , . . . , 1) ∈ α(xl)

for all l, but r /∈ φ−1 ◦ γ(vi,j) if l 6= ρ(i, hi(k)) = ρ(i, j). Hence φ−1 ◦ γ(vi,j) =
α(xρ(i,j)) as required.
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Define the homomorphisms

ψi : Bi → Ci,

ψi

(
f

g

)
=

(
f

g
+
〈
Xhi(1)

〉
, . . . ,

f

g
+
〈
Xhi(|Hi|)

〉)
,

ψ

(
f1

g1
, . . . ,

fl
gl

)
=

(
φ1

(
f1

g1

)
, . . . , φl

(
fl
gl

))
.

The function ψ is a homomorphism by Lemma 3.12. The surjectivity of ψi
follows from the Chinese Remainder Theorem for rings and maximality of each
ideal 〈Xj〉, and surjectivity of ψ follows directly from surjectivity of each ψi.
We claim that Specψ is isomorphic to g. We have g(vi,j) = vi,j as g is the
inclusion function. Moreover vi,0 /∈ Z for all i, so our aim is to show that

ψ−1(γ(vi,j)) = B1 × · · · ×

ith place︷︸︸︷
〈Xj〉 × · · · ×Bl.

Suppose
(
f1
g1
, . . . , flgl

)
∈ ψ−1(γ(vi,j)). Then

ψi

(
fi
gi

)
=

(
fi
gi

+
〈
Xhi(1)

〉
, . . . ,

fi
gi

+
〈
Xhi(k)

〉
, . . . ,

fi
gi

+
〈
Xhi(|Hi|)

〉)

∈

ith place︷ ︸︸ ︷
〈1〉 × · · · × 〈0〉︸︷︷︸

kth place

× · · · × 〈1〉,where hi(k) = j,

so fi
gi

+
〈
Xhi(k)

〉
= fi

gi
+ 〈Xj〉 = 0 + 〈Xj〉. Hence fi

gi
∈ 〈Xj〉. We have

r = (1, . . . ,

lth place︷︸︸︷
0 , . . . , 1) ∈ β(vl,m)

for l 6= i, but r /∈ ψ−1(γ(vi,j)). Hence ψ−1(γ(vi,j)) = β(vi,m) for some m. But
note that

r = (1, . . . ,

ith place︷︸︸︷
Xj , . . . , 1) /∈ β(vi,m)

for m 6= j, but r ∈ ψ−1(γ(vi,j)). Hence ψ−1(γ(vi,j)) = β(vi,j) as required.

The last two results combined with Fontana’s theorem tell us that SpecA×CB ∼=
X tZ Y ∼= W . Let δ : W → SpecA×C B, δ(w) = χ ◦ ω(w), or explicitly,

δ(w) =

{
p−1
A ◦ α ◦ τ−1(w) if w ∈M(W ),

p−1
B ◦ β ◦ µ−1(w) if w ∈W \M(W ).
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Example 3.14. Let W be the poset from Example 3.7. We have H1 = H2 =
{1, 2} with h1(1) = h2(1) = 1 and h1(2) = h2(2) = 2. Then the required rings
are

A = k × k,
B1 = k[X1, X2]〈X1〉,〈X2〉,

B2 = k[X1, X2, X3]〈X1〉,〈X2〉,〈X3〉,

B = B1 ×B2

C = B1/ 〈X1〉 ×B1/ 〈X2〉 ×B2/ 〈X1〉 ×B2/ 〈X2〉 .

We have ρ(1, 1) = ρ(2, 1) = 1 and ρ(1, 2) = ρ(2, 2) = 2. The required homomor-
phisms are

φ : A→ C,

φ(a1, a2) = (a1 + 〈X1〉 , a2 + 〈X2〉 , a1 + 〈X1〉 , a2 + 〈X2〉),
ψ : B → C,

ψ

(
f1

g1
,
f2

g2

)
=

(
f1

g1
+ 〈X1〉 ,

f1

g1
+ 〈X2〉 ,

f2

g2
+ 〈X1〉 ,

f2

g2
+ 〈X2〉

)
.

Then W ∼= SpecA×C B.
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3.3 Homomorphism Construction

Let W, W̃ be 1-dimensional posets. We refer to objects used in the poset and
ring constructions of W̃ using tildes. In this section we give a construction for
a homomorphism corresponding to an order-preserving function F : W → W̃ ,
provided we enforce an extra limitation. The limitation in question requires
that we can find a set M(W̃ ) as described in the poset construction procedure
such that F (J(W )) ⊆M(W̃ ).

We assume that such a set M(W̃ ) exists, and use it in the poset and ring con-
struction procedures to produce a ring D̃ with spectrum isomorphic to W̃ . We
choose rings B̃i with no throw-away indeterminates. We take M(W ) = J(W ) in
the poset and ring construction processes to produce D, and in choosing rings
Bi we add throw-away indeterminates. The number of throw-away indetermi-
nates we add will be determined later in the process.

Since F (M(W )) ⊆M(W̃ ), the function

FA : X → X̃,

FA(xi) = τ̃−1 ◦ F ◦ τ(xi),

is well-defined, and by definition is isomorphic to the restriction of the domain
of F to M(W ). Now define the function

θ : {1, . . . , |X|} →
{

1, . . . ,
∣∣∣X̃∣∣∣} ,

θ(i) = j ⇐⇒ FA(xi) = x̃j .

Then define the homomorphism

ΦA : Ã→ A,

ΦA(a1, . . . , a|X̃|) = (aθ(1), . . . , aθ(|X|)).

This is well-defined by applying Lemma 3.11 to the projections of Ã to its
subfields k.

Proposition 3.15. FA is isomorphic to Spec ΦA.

Proof. Suppose FA(xi) = x̃j . Note that θ(i) = j. We want to show that
Φ−1
A ◦ α(xi) = α̃(x̃j). Suppose (a1, . . . , a|X̃|) ∈ Φ−1

A ◦ α(xi). Then

ΦA(a1, . . . , a|X̃|)

= (aθ(1), . . . , aθ(i), . . . , aθ(|X|))

∈ k × · · · ×

ith place︷︸︸︷
〈0〉 × · · · × k,
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so aθ(i) = aj = 0. Note that

r = (1, . . . ,

kth place︷︸︸︷
0 , . . . , 1) ∈ α̃(x̃k),

but r /∈ Φ−1
A ◦ α(xi) for k 6= j. The only remaining possibility is Φ−1

A ◦ α(xi) =
α̃(x̃j).

Suppose F (wi) = w̃k for i ∈ {1, . . . , l}. There exists some j ∈
{

1, . . . , l̃
}

such that w̃k ∈ w̃↑j . Then since F is order presering, for all wl ∈ w↑i we have

F (wl) ≥ F (wi) = w̃k ≥ w̃j , so F (w↑i ) ⊆ w̃↑j for some j ∈
{

1, . . . , l̃
}

. Hence the

function

σ : {1, . . . , l} →
{

1, . . . , l̃
}
,

σ(i) = j =⇒ F (w↑i ) ⊆ w̃↑j ,

is well-defined (note that the function is not necessarily unique). Then we have
the induced functions

Fi : Vi → Ṽσ(i),

Fi(vi,j) = µ̃−1
σ(i) ◦ F ◦ µi(vi,j),

which by definition are isomorphic to the restrictions of the domain of F to
w↑i . Each of these is an order-preserving function between 1-d posets with least
elements, so by Theorem 2.18 there exist homomorphisms Φi : B̃σ(i) → Bi such

that Spec Φi is isomorphic to Fi. This means that, if p ∈ SpecB and q ∈ Spec B̃
and

β(vi,j) = B1 × · · · × p× · · · ×Bl,
β̃(ṽσ(i),k) = B̃1 × · · · × q× · · · × B̃l̃

then Fi(vi,j) = ṽσ(i),k if and only if Φ−1
i (p) = q. To allow for these homomor-

phisms to be constructed, we choose the number of throw-away indeterminates
in Bi to be the number of indeterminates in B̃σ(i). Define the function

FB : Y → Ỹ ,

FB(vi,j) = Fi(vi,j).

Now define the function

ΦB : B̃ → B,

ΦB

(
f1

g1
, . . . ,

fl̃
gl̃

)
=

(
Φ1

(
fσ(1)

gσ(1)

)
, . . . ,Φl

(
fσ(l)

gσ(l)

))
.

Our aim is to show that Spec ΦB is isomorphic to FB , and we require the
following lemma, which uses the projection homomorphisms pi : B → Bi.

35



Lemma 3.16. [4]Let p ∈ SpecBi. Then p̃−1
σ(i) ◦ Φ−1

i (p) = Φ−1
B ◦ p

−1
i (p).

Proof. Let (r1, . . . , rl̃) ∈ p̃−1
σ(i) ◦ Φ−1

i (p). Then rσ(i) ∈ Φ−1
i (p), so there exists

si ∈ p such that Φi(rσ(i))) = si. Since sj = Φj(rσ(j)) ∈ Bj for all j, we have

(s1, . . . , si, . . . , sl) ∈ p−1
i (p). Note that ΦB(r1, . . . , rl̃) = (s1, . . . , si, . . . , sl), so

(r1, . . . , rl̃) ∈ Φ−1
B ◦ p

−1
i (p).

Now let (r1, . . . , rl̃) ∈ Φ−1
B ◦p

−1
i (p). Then there exists (s1, . . . , sl) ∈ p−1

i (p) such
that ΦB(r1, . . . , rl̃) = (s1, . . . , sl). Then si ∈ p, and since Φi(rσ(i)) = si, we

have rσ(i) ∈ Φ−1
i (p), so (r1, . . . , rl̃) ∈ p̃

−1
σ(i) ◦ Φ−1

i (p).

Proposition 3.17. FB is isomorphic to Spec ΦB.

Proof. Suppose F (vi,j) = ṽσ(i),k and

β(vi,j) = B1 × · · · × p× · · · ×Bl,
β̃(ṽσ(i),k) = B̃1 × · · · × q× · · · × B̃l̃.

Note that β(vi,j) = p−1
i (p) and β̃(vσ(i),k) = p̃−1

σ(i)(q). Then we have

β̃−1 ◦ Φ−1
B ◦ β(vi,j) = β̃−1 ◦ Φ−1

B ◦ p
−1
i (p)

= β̃−1 ◦ p̃−1
σ(i) ◦ Φ−1

i (p)

= β̃−1 ◦ p̃−1
σ(i)(q)

= ṽσ(i),k,

as required.

We shall combine ΦA and ΦB in a similar fashion to Lemma 3.12 to form a
function Φ, but since we are not dealing with regular product rings, we must
first check that the ‘fibre product constraint’ is always satisfied by elements in
the image of this function.

Proposition 3.18. Let (a, b) ∈ D̃. Then (ΦA(a),ΦB(b)) ∈ D.

Proof. If (ΦA(a),ΦB(b)) then φ(ΦA(a)) = ψ(ΦB(b)), which means φi ◦ΦA(a) =

ψi ◦ Φi

(
fσ(i)
gσ(i)

)
, which can be equivalently stated as

Φi

(
fσ(i)

gσ(i)

)
+
〈
Yhi(j)

〉
= aθ◦ρ(i,hi(j)) +

〈
Yhi(j)

〉
for i ∈ {1, . . . , l} and j ∈ {1, . . . , |Hi|}.

First, we aim to show that if FB(vi,hi(j)) = ṽσ(i),h̃σ(i)(k) then θ ◦ ρ(i, hi(j)) =

[4]We use several results of this type in this section, and use a result similar to it in the
next. The results come from the fact that we can form a ‘commutative square’ with the rings
and homomorphisms involved.
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ρ̃(σ(i), h̃σ(i)(k)). Suppose ρ(i, hi(j)) = r and ρ̃(σ(i), h̃σ(i)(k)) = s. Then

f(vi,hi(j)) = τ−1 ◦ µ(vi,hi(j)) = xr and f̃(ṽσ(i),h̃σ(i)(k)) = τ̃−1 ◦ µ̃(ṽσ(i),h̃σ(i)(k)) =

x̃s. Then we have

FA(xr) = τ̃−1 ◦ F ◦ τ(xr)

= τ̃−1 ◦ F ◦ τ ◦ τ−1 ◦ µ(vi,hi(j))

= τ̃−1 ◦ F ◦ µ(vi,hi(j))

= τ̃−1 ◦ µ̃ ◦ µ̃−1F ◦ µ(vi,hi(j))

= τ̃−1 ◦ µ̃ ◦ FB(vi,hi(j))

= τ̃−1 ◦ µ̃(ṽσ(i),h̃σ(i)(k))

= x̃s,

so θ(r) = s. Hence θ ◦ ρ(i, hi(j)) = ρ̃(σ(i), h̃σ(i)(k)).

Because (a, b) ∈ D, we have φ̃(a) = ψ̃(b), so ψ̃σ(i)

(
fσ(i)
gσ(i)

)
= φ̃σ(i)(a). In partic-

ular, we have

fσ(i)(X1, . . . , X|B̃σ(i)|−1)

gσ(i)(X1, . . . , X|B̃σ(i)|−1)
+
〈
Xh̃σ(i)(k)

〉
= aρ̃(σ(i),h̃σ(i)(k)) +

〈
Xh̃σ(i)(k)

〉
.

Equivalently, there exists p
q ∈ B̃σ(i) such that

fσ(i)(X1, . . . , X|B̃σ(i)|−1)

gσ(i)(X1, . . . , X|B̃σ(i)|−1)
=
p

q
Xh̃σ(i)(k) + aρ̃(σ(i),h̃σ(i)(k)).

Recall that FB(vi,hi(j)) = ṽσ(i),h̃σ(i)(k). If Spec Φi sends the minimal element of

SpecBi to the minimal element of Spec B̃σ(i) then Yhi(j) | η(Xh̃σ(i)(k)), and we

have

Φi

(
fσ(i)

gσ(i)

)
+
〈
Yhi(j)

〉
=
fσ(i)(η(X1), . . . , η(X|B̃σ(i)|−1))

gσ(i)(η(X1), . . . , η(X|B̃σ(i)|−1))
+
〈
Yhi(j)

〉
=
p(η(X1), . . . , η(X|B̃σ(i)|−1))

q(η(X1), . . . , η(X|B̃σ(i)|−1))
η(Xh̃σ(i)(k)) + aρ̃(σ(i),h̃σ(i)(k)) +

〈
Yhi(j)

〉
= aθ◦ρ(i,hi(j)) +

〈
Yhi(j)

〉
.

Now suppose Spec Φi sends the minimal element of SpecBi to a maximal element
of Spec B̃σ(i). To preserve order, all prime ideals must be sent to the same place.

We have FB(vi,hi(h)) = ṽσ(i),h̃σ(i)(k), so Φ−1(
〈
Yhi(j)

〉
) =

〈
Xh̃σ(i)(k)

〉
, hence all

prime ideals must be sent to
〈
Xh̃σ(i)(k))

〉
, so Xh̃σ(i)(k) is evaluated at zero in
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the homomorphism. Therefore

Φi

(
fσ(i)

gσ(i)

)
+
〈
Yhi(j)

〉

=
fσ(i)(η(X1), . . . ,

h̃σ(i)(k)th place︷︸︸︷
0 , . . . , η(X|B̃σ(i)|−1))

gσ(i)(η(X1), . . . , 0︸︷︷︸
h̃σ(i)(k)th place

, . . . , η(X|B̃σ(i)|−1))
+
〈
Yhi(j)

〉

=
p

q
· 0 + aρ̃(σ(i),h̃σ(i)(k)) +

〈
Yhi(j)

〉
= aθ◦ρ(i,hi(j)) +

〈
Yhi(j)

〉
.

Finally, we can define the homomorphism

Φ : D̃ → D,

Φ(a, b) = (ΦA(a),ΦB(b)).

The following pair of lemmas makes it easy to prove that Spec Φ is isomorphic
to F . They involve the use of the projection maps

pA : A×C B → A,

pB : A×C B → B,

pÃ : Ã×C̃ B̃ → Ã,

pB̃ : Ã×C̃ B̃ → B̃.

Lemma 3.19. Φ−1 ◦ p−1
A = p−1

Ã
Φ−1
A .

Proof. Let p ∈ Spec Ã ×C̃ B̃. Let (a, b) ∈ Φ−1 ◦ p−1
A (p). Then there exists

(c, d) ∈ p−1
A (p) such that Φ(c, d) = (ΦA(c),ΦB(d)) = (a, b). Then c ∈ p, so

a ∈ Φ−1
A (p), and (a, b) ∈ Ã×C̃ B̃ so (a, b) ∈ p−1

Ã
Φ−1
A .

Let (a, b) ∈ p−1

Ã
Φ−1
A (p). Then a ∈ Φ−1

A (p), so there exists c ∈ p such that

ΦA(a) = c. Recall that if (a, b) ∈ Ã×C̃ B̃ then (ΦA(a),ΦB(b)) ∈ A×C B, so let
d = ΦB(b). Then (c, d) ∈ p−1

A (p), so (a, b) ∈ Φ−1 ◦ p−1
A (p).

The proof of the following lemma is near-identical.

Lemma 3.20. Φ−1 ◦ p−1
B = p−1

B̃
Φ−1
B .

Theorem 3.21. Spec Φ is isomorphic to F .
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Proof. We must show that F (w) = δ̃ ◦Φ−1 ◦ δ(w) for all w ∈W . If w ∈M(W )
then let xj = τ−1(w) and x̃k = τ̃−1 ◦ F (w). Then we have

δ̃ ◦ Φ−1 ◦ δ(w) = τ̃ ◦ α̃−1 ◦ pÃ ◦ Φ−1 ◦ p−1
A ◦ α ◦ τ

−1(w)

= τ̃ ◦ α̃−1 ◦ pÃ ◦ p
−1

Ã
◦ Φ−1

A ◦ α ◦ τ
−1(w)

= τ̃ ◦ α̃−1 ◦ Φ−1
A ◦ α ◦ τ

−1(w)

= τ̃ ◦ FA ◦ τ−1(w)

= F (w).

If w ∈W then there exists vi,j ∈ Y such that µ(vi,j) = w, and ṽσ(i),k such that
µ̃(ṽσ(i),k) = F (w). Then we have

δ̃ ◦ Φ−1 ◦ δ(w) = τ̃ ◦ β̃−1 ◦ pB̃ ◦ Φ−1 ◦ p−1
B ◦ β ◦ µ

−1(w)

= µ̃ ◦ β̃−1 ◦ pB̃ ◦ p
−1

B̃
◦ Φ−1

B ◦ β ◦ µ
−1(w)

= µ̃ ◦ β̃−1 ◦ Φ−1
B ◦ β ◦ µ

−1(w)

= µ̃ ◦ FB ◦ µ−1(w)

= F (w).
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Example 3.22. Consider the order-preserving function below.

W

w1 w2

w3

W̃

w̃1 w̃2

w̃3 w̃4 w̃5

F

We constructed a ring D̃ with spectrum isomorphic to W̃ in Example 3.14.
We have that W ∼= X tZ Y where X = {x1} , Y = {v1,0, v1,1, v2,0, v2,1} , Z =
{v1,1, v2,1} and f(v1,1) = f(v2,1) = x1. Furthermore if

A = k,

B1 = k[Y1, Y2, Y3, Y4]〈Y1〉,

B2 = k[Y1, Y2, Y3]〈Y1〉,

B = B1 ×B2,

C = B1/ 〈Y1〉 ×B2/ 〈Y1〉

and φ, ψ are the homomorphisms obtained from the ring construction and D =
A×C B, then W ∼= SpecD. We have σ(1) = 2, σ(2) = 1, FA(x1) = x2, θ(1) = 2
and the functions F1 and F2 are as pictured on the next page. Then we have
ΦA(a1, a2) = a2,

Φ1 : B̃2 → B1,

Φ1

(
f(X1, X2, X3)

g(X1, X2, X3)

)
=
f(Y2, Y1, Y4)

g(Y2, Y1, Y4)
,

Φ2 : B̃1 → B2,

Φ2

(
f(X1, X2)

g(X1, X2)

)
=
f(Y2, Y1)

g(Y2, Y1)
,

so the function

Φ : D̃ → D,

Φ

(
(a1, a2),

(
f1(X1, X2)

g1(X1, X2)
,
f2(X1, X2, X3)

g2(X1, X2, X3)

))
=

(
a2,

(
f2(Y2, Y1, Y4)

g2(Y2, Y1, Y4)
,
f1(Y2, Y1)

g1(Y2, Y1)

))
is such that Spec Φ is isomorphic to F .
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V1

v1,0

v1,1

V2

v2,0

v2,1

Ṽ1

ṽ1,0

ṽ1,1 ṽ1,2

Ṽ2

ṽ2,0

ṽ2,1 ṽ2,2 ṽ2,3

F1

F2
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4 n-Dimensional ‘Trees’

In this section, we give a final set of poset, ring and homomorphism construction
methods. This time, the methods will be used to construct rings isomorphic to
posets of higher dimensions. In contrast to the separate gluing and joining pro-
cedures seen in other methods, our restriction of this method to a class of posets
resembling ‘upside-down trees’ allows us to both ‘glue’ and ‘join’ posets using
a single application of the amalgamated sum, and hence a single application of
the fibre product.

Definition 4.1 (Tree). Let W be a poset. We say W is a tree if it is connected,
has a greatest element, and w↑ is totally-ordered for every w ∈W .

Figure 1: A 3-dimensional tree.

Note that in some texts, a tree is defined to have w↓ totally ordered for all
w ∈W . In a sense, here we are discussing ‘upside-down trees’, but we will refer
to them as trees for convenience.

4.1 Poset Construction

Let W be an n-dimensional tree. Our aim is to build a copy of W using ‘atomic’
posets of the form

V = {v1, v2} ,
vi ≤ vj ⇐⇒ i ≤ j.

Since our ring and homomorphism constructions are inductive procedures, it is
useful to be able to reduce/increase the dimension of W at will. Let w1 be the
greatest element of W . We define the ith layer of W , denoted Li, to be the set

Li = {w ∈W : the maximum chain from w to w1 is of length i} .

Lemma 4.2. An n dimensional tree W can be partitioned into n+1 non-empty
layers, that is for each w ∈ W there exists a unique i ∈ {0, . . . , n} such that
w ∈ Li.

Proof. It follows from the definition that the layers of W are disjoint. Since W
is n-dimensional, the longest chain in W , w0 < · · · < wn, is of length n. Since
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w↑0 is totally ordered, each chain starting at wi and terminating at wn is a ‘sub-
chain’ of this chain, so the maximum chain beginning at wi and terminating
at wn has length n − i. Hence wi ∈ Ln−i for i = 0, . . . , n, so each layer is
non-empty.

L0

L1

L2

L3

Figure 2: A 3-dimensional tree, partitioned into layers.

Lemma 4.3. Each layer of a tree is 0-dimensional.

Proof. Suppose Li contains a chain of length 1. Then Li contains elements
w3 < w2. Let w1 be the greatest element of W . The maximum chain in W
starting at w2 and terminating at w1, w2 < · · · < w1, is of length i, but the
chain w3 < w2 < · · · < w1 is of length i + 1, which is a contradiction as
w3 ∈ Li.

Lemma 4.4. Let W be an n-dimensional tree. Then W \ Ln is an n − 1
dimensional tree.

Proof. If w1 is the greatest element of W then it is the greatest element of
W \ Ln. Then the poset W \ Ln cannot be disconnected as it has a greatest
element. The layer Ln−1 is a non-empty subset of W \ Ln, so W contains a
chain of length n−1. Suppose W \Ln contains a chain w2 > w3 > · · · > wn+2 of
length n. Then w1 ≤ w2 > w3 > · · · > wn+2 is a chain of length greater than n,
so the chain contains an element of Lk for k ≥ n, which is a contradiction.

Lemma 4.5. Let W be an n-dimensional tree with greatest element w1. Then
for all w2 ∈W \ {w1} there exists a unique w3 ∈W which covers w2. Further-
more, if w2 ∈ Lk then w3 ∈ Lk−1.

Proof. Since w2 ∈ Lk there is a chain of length k from w2 to w1, and since W
is finite, one of these elements must cover w2. Suppose w3 6= w4 both cover w2.
Then w2 < w3 and w2 < w4, but w↑2 is totally ordered so either w2 < w3 < w4

or w2 < w4 < w3, which means one of w3 or w4 does not cover w2. Now suppose
w3 covers w2 and w3 /∈ Lk−1. Since w3 > w2 we must have w3 ∈ Ll for l < k−1.
Then the maximum chain from w3 to w1 is of length l < k−1, but the maximum
chain from w2 to w1 is of length k. Since w↑2 is totally ordered and all elements

of the chain are contained in w↑2 , w3 must be an element of the chain. But w3
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covers w2, so there is a chain from w3 to w1 of length k − 1 > l, which is a
contradiction.

Theorem 4.6. Let W be an n-dimensional tree. Define the posets

X = W \ Ln,
Y =

{
v1,1, v1,2, . . . , v|Ln|,1, v|Ln|,2

}
,

Z = {vi,2 ∈ Y } ,

where the order relation on Y is

vi,j ≤ vk,l ⇐⇒ i = k and j ≤ l.

Let

f : Z → X,

f(vi,2) = wj ⇐⇒ wj covers w|W\Ln|+i,

and let g : Z → Y be the inclusion function. Then W ∼= X tZ Y .

Proof. We claim that the function

ω : W → X tZ Y,

ω(wi) =

{
wi if wi ∈W \ Ln,
vi−|W\Ln|,1 if wi ∈ Ln,

is an order isomorphism. We have W \ Ln = X and |Y \ Z| = |Ln|, so ω is
a surjection between two sets of the same size and is therefore bijective. Let
wi ≤ wj . If wi, wj ∈ W \ Ln then ω(wi) ≤ ω(wj). If wi, wj ∈ Ln then wi = wj
as Ln is 0-dimensional, so ω(wi) = ω(wj).
Now suppose ω(wi) ≤ ω(wj). If ω(wi), ω(wj) ∈ X then wi = ω(wi) ≤ ω(wj) =
wj . If ω(wi), ω(wj) ∈ Y \ Z then ω(wi) = ω(wj) as Y \ Z is 0-dimensional,
so wi = wj . If ω(wi) ∈ Y \ Z, ω(wj) ∈ X then there exists vk,l ∈ Z such
that ω(wi) ≤ g(vk,l) and f(vk,l) ≤ ω(wj) = wj . Since g is the inclusion and
Y \ Z is 0-dimensional we have ω(wi) = vk,l. Hence vk,l = vi−|W\Ln|,1. Then
f(vi−|W\Ln|,1) = wk implies wk covers wi in W , so wi ≤ wk ≤ wj .
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Example 4.7. Let W be the poset depicted below.

W

w1

w2 w3

w4 w5

We first build the 1-dimensional tree W \ L2. We define the posets

X1 = {v} ,
Y1 = {v1,1, v1,2, v2,1, v2,2} ,
Z1 = {v1,2, v2,2} ,

and define the function f1 such that f(v1,2) = f(v2,2) = v. Then W \ L2
∼=

X1 tZ1 Y1, so let X2 = X1 tZ1 Y1. Now define the posets

Y2 = {v1,1, v1,2, v2,1, v2,2} ,
Z2 = {v1,2, v2,2} ,

and the function f2 such that f(v1,2) = f(v2,2) = v1,2 (in X2). Then W ∼=
X2 tZ2

Y2 = (X1 tZ1
Y1) tZ2

Y2.
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4.2 Ring Construction

In this section we give an inductive procedure for constructing a ring with
spectrum isomorphic to a given tree. The first three results give a base case
for this procedure and the final three form the inductive step. The process is
analagous to the poset construction procedure, and we shall construct the rings
‘layer by layer’.

Base Case

Lemma 4.8. Let W be a 1-dimensional tree with t elements. Then if X,Y, Z
are as defined in this section’s poset construction and we define the rings

A = R1 := k,

B = R2 × · · · ×Rt :=
(
k[X1]〈X1〉

)t−1
,

C = R2/ 〈X1〉 × · · · ×Rt/ 〈X1〉 =
(
k[X1]〈X1〉/ 〈X1〉

)t−1
,

we have X ∼= SpecA, Y ∼= SpecB and Z ∼= SpecC.

Proof. We have that X ∼= SpecA as both are one element posets, so any function
between them is an order isomorphism. In particular, the function

α : X → SpecA,

α(w1) = 〈0〉 ,

is an order isomorphism.

Let Vi = {vi,j ∈ Y } = {vi,1, vi,2}. Then Y = V1t· · ·tVt−1, and Vi ∼= SpecRi+1

for i ∈ {1, . . . , t− 1}. Hence Y ∼= SpecR2 × · · · × Rt = SpecB. In particular,
the function

β : Y → SpecB,

β(vi,j) =

{
p−1
R1+i

(〈0〉) if j = 1,

p−1
R1+i

(〈X1〉) if j = 2,

is an order isomorphism.

We have that Z ∼= SpecC as Z is a 0-dimensional poset with t− 1 elements and
C is the product of t− 1 fields. Thus any bijective function between them is an
order isomorphism. In particular, the function

γ : Z → SpecC,

γ(vi,2) = 〈1〉 × · · · ×

ith place︷︸︸︷
〈0〉 × · · · × 〈1〉

is an order isomorphism.
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We stress that, like in Theorem 2.6, we can add throw-away indeterminates to
our above rings without affecting any of the subsequent results, that is, for some
1 < p ≤ q we can take A = k(Xp, . . . , Xq) and Ri = k[X1, Xp, . . . , Xq]〈X1〉 for
i ∈ {2, . . . , t}, and all of the results in this section can be proven in a near-
identical manner.

Lemma 4.9. Let W be a 1-dimensional tree with t elements. Then, if X,Y, Z, f, g
are as defined in this section’s poset construction, A,B,C are as defined in
Lemma 4.8 and we define

φ : A→ C,

φ(f1) = (f1 + 〈X1〉 , . . . , f1 + 〈X1〉),
ψ : B → C,

ψ(f2, . . . , ft) = (f2 + 〈X1〉 , . . . , ft + 〈X1〉),

we have that ψ is surjective and Specφ and Specψ are isomorphic to f and g
respectively.

Proof. Recall that α : X → SpecA, β : Y → SpecB and γ : Z → SpecC as
defined in Lemma 4.8 are order isomorphisms. We immediately obtain that f
and Specφ are isomorphic, as the domains are isomorphic, the codomains are
isomorphic and the codomains are of size 1.
The function ψ is surjective as given (c2, . . . , ct−1) ∈ C we can simply pick a
representative fi of ci and we have ψ(f2, . . . , ft−1) = (c2, . . . , ct−1). To show
that g and Specψ are isomorphic, we can show that β ◦ g(vi,2) = ψ−1 ◦ γ(vi,2).
We have that g(vi,2) = vi,2, and that β(vi,2) = p−1

R1+i
(〈X1〉). We also have that

γ(vi,2) = pi := 〈1〉 × · · · ×

ith place︷︸︸︷
〈0〉 × · · · × 〈1〉 ,

so we must show that p−1
R1+i

(〈X1〉) = ψ−1(pi). To begin with, note that

(1, . . . ,

jth place︷︸︸︷
0 , . . . , 1) ∈ p−1

R1+j
(〈0〉), p−1

R1+j
(〈X1〉) for j 6= i, but

ψ(1, . . . ,

jth place︷︸︸︷
0 , . . . , 1) = (1 + 〈X1〉 , . . . ,

jth place︷ ︸︸ ︷
0 + 〈X1〉, . . . , 1 + 〈X1〉) /∈ pi.

Thus the only remaining possibilities are p−1
R1+i

(〈0〉) = ψ−1(pi) and p−1
R1+i

(〈X1〉) =

ψ−1(pi). Now note that

ψ(0, . . . ,

ith place︷︸︸︷
X1 , . . . , 0) = (0 + 〈X1〉 , . . . , 0 + 〈X1〉) ∈ pi, but

(0, . . . ,

ith place︷︸︸︷
X1 , . . . , 0) /∈ p−1

R1+i
(〈0〉).

Hence the only remaining possibility is p−1
R1+i

(〈X1〉) = ψ−1(pi). Therefore Specψ
and g are isomorphic.
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Proposition 4.10. Let W be a 1-dimensional tree with t elements. Then there
exists a ring D such that

� D ⊆ R1 × · · · ×Rt (that is, we have t homomorphisms pj : D → Rj, each
of which is a composition of the inclusion i : D → R1 × · · · × Rt and the
projection pRj : R1 × · · · ×Rt → Rj);

� the function

δ : W → SpecD,

δ(wj) = p−1
j (〈0〉)

is an order-isomorphism;

� we have

Rj =

{
k if j = 1,

k[X1]〈X1〉 if j ∈ {2, . . . , t}.

Proof. Let D = A×CB, where A,B and C are as defined in Lemma 4.8 and φ, ψ
are as defined in Lemma 4.9. Then we have D = A×CB ⊆ A×B = R1×· · ·×Rt,
proving the property in the first bullet point.

Recall from this section’s poset construction that the function

ω : W → X tZ Y,

ω(wi) =

{
wi if wi ∈W \ Ln,
vi−|W\Ln| if wi ∈ Ln

is an order isomorphism. Then by Fontana’s theorem, the function

χ : X tZ Y → SpecA×C B,

χ(w) =

{
p−1
A ◦ α(w) if w ∈ X,
p−1
B ◦ β(w) if w ∈ Y \ Z,

is an order isomorphism. We claim that δ = χ ◦ω is of the required form. Note
that α(w) = p−1

A (〈0〉), and since A = R1 we have pA = p1. We have that

Y \ Z = {vi,1 ∈ Y : 1 ≤ i ≤ t− 1} .

Hence the restriction of β to Y \Z is given by β(w) = p−1
R1+i

(〈0〉). Since we have

that pi = pRi ◦ pB for i ∈ {2, . . . , t}, it follows that δ = χ ◦ ω is of the required
form, proving the property in the second bullet point.

The third bullet point follows directly from our definitions of R1, . . . , Rt.
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Inductive Step

We now generalise the previous results to trees of any dimension.

Lemma 4.11. Let W be an n-dimensional tree. Then, if X,Y, Z are as defined
in this section’s poset construction and we define the rings

B = R|W\Ln|+1 × · · · ×R|W\Ln|+|Ln| :=
(
k[X1, . . . , Xn]〈Xn〉

)|Ln|
,

C = R|W\Ln|+1/ 〈Xn〉 × · · · ×R|W\Ln|+|Ln|/ 〈Xn〉 =
(
k[X1, . . . , Xn]〈Xn〉/ 〈Xn〉

)|Ln|
,

we have Y ∼= SpecB and Z ∼= SpecC.

Proof. The posets Y and SpecB are isomorphic by the same reasoning as in
Lemma 4.8. In particular, the function

β : Y → SpecB,

β(vi,j) =

{
p−1
R|W\Ln|+i

(〈0〉) if j = 1,

p−1
R|W\Ln|+i

(〈Xn〉) if j = 2,

is an order isomorphism.

Since C is the product of |Ln| fields and Z is a 0-dimensional poset with |Ln|
elements, any bijective function between them is an order isomorphism. In
particular, the function

γ : Z → SpecC,

γ(vi,2) = pi := 〈1〉 × · · · ×

ith place︷︸︸︷
〈0〉 × · · · × 〈1〉

is an order isomorphism.

Lemma 4.12. Let W be an n-dimensional tree. Let X,Y, Z, f, g be as defined
in this section’s poset construction, B,C as defined in Lemma 4.11 and suppose
there exists a ring A such that

� A ⊆ R1 × · · · × R|W\Ln| (that is, we have |W \ Ln| homomorphisms pj :
A → Rj, each of which is a composition of the inclusion i : A → R1 ×
· · · ×R|W\Ln| and the projection pRj : R1 × · · · ×R|W\Ln| → Rj);

� the function

α : W \ Ln → SpecA,

α(wj) = p−1
j (〈0〉)

is an order isomorphism;

� we have

Rj =

{
k if wj ∈ L0,

k[X1, . . . , Xl]〈Xl〉 if wj ∈ Ll.
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Then there exist homomorphisms φ and ψ such that Specφ and Specψ are
isomorphic to f and g respectively.

Proof. Define the function

σ : {1, . . . , |Ln|} → {1, . . . , |W |} ,
σ(i) = j ⇐⇒ f(vi,2) = wj .

Then we claim that the homomorphism

φ : A→ C,

φ(f1, . . . , f|W\Ln|) = φ(r) = (pσ(1)(r) + 〈Xn〉 , . . . , pσ(|Ln|)(r) + 〈Xn〉)

is such that Specφ is isomorphic to f . In other words, we must show that
α ◦ f(vi,2) = φ−1 ◦ γ(vi,2). Let wj be the element of W \ Ln that covers
w|W\Ln|+i. Then f(vi,2) = wj and σ(i) = j. We have that α(wj) = p−1

j (〈0〉)
and γ(vi,2) = pi, so we need to show that φ−1(pi) = p−1

j (〈0〉).

Suppose r = (r1, . . . , r|W\L|) ∈ φ−1(p). Then there exists s = (s1, . . . , s|Ln|) ∈
pi such that φ(r) = s. Since s ∈ pi, we must have si = 0. Hence pσ(i)(r) +
〈Xn〉 = pj(r) + 〈Xn〉 = rj + 〈Xn〉. This means rj ∈ 〈Xn〉. But recall that
pj : A → Rj . Since wj is the element that covers wi, we have that wj ∈ Ln−1,
so Rj = k[X1, . . . , Xn−1, Xp . . . , Xq]〈Xl〉. The only element rj ∈ Rj such that

rj + 〈Xn〉 = 0 + 〈Xn〉 is rj = 0. Thus r ∈ p−1
j (〈0〉), so φ−1(p) ⊆ p−1

j (〈0〉). Now

let r = (r1, . . . , r|W\Ln|) ∈ p
−1
j (〈0〉). Then rσ(i) = rj = 0, so φ(r) ∈ pi. Thus

r ∈ φ−1(pi), so p−1
j (〈0〉) = φ−1(pi). Therefore Specφ is isomorphic to f .

It can be shown that the homomorphism

ψ : B → C,

ψ(f|W\Ln|+1, . . . , f|W\Ln|+|Ln|) = (f|W\Ln|+1 + 〈Xn〉 , . . . , f|W\Ln|+|Ln| + 〈Xn〉)

is surjective and that Specψ is isomorphic to g by near-identical methods to
those used in the proof of Lemma 4.9.

Theorem 4.13. Let W be an n-dimensional tree. Then there exists a ring D
such that

� D ⊆ R1 × · · · ×R|W | (that is, we have |W | homomorphisms pj : D → Rj,
each of which is a composition of the inclusion i : D → R1 × · · · × R|W |
and the projection pRj : R1 × · · · ×R|W | → Rj);

� the function

δ : W → SpecD,

δ(wj) = p−1
j (〈0〉)

is an order isomorphism;
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� we have

Rj =

{
k if wj ∈ L0,

k[X1, . . . , Xl]〈Xl〉 if wj ∈ Ll.

Proof. We proceed by induction on the dimension of W . The proof of our base
case follows from Proposition 4.10. We now assume the induction hypothesis
for trees of dimension 1 to n − 1. Now let W be a tree of dimension n. Then
by Lemma 4.4 the poset W \Ln is a tree of dimension n− 1, so by assumption
there exists a ring A such that

� A ⊆ R1 × · · · × R|W\Ln| (that is, we have |W \ Ln| homomorphisms pj :
A → Rj , each of which is a composition of the inclusion i : A → R1 ×
· · · ×R|W\Ln| and the projection pRj : R1 × · · · ×R|W\Ln| → Rj);

� the function

α : W \ Ln → SpecA,

α(wj) = p−1
j (〈0〉)

is an order isomorphism;

� we have

Rj =

{
k if wj ∈ L0,

k[X1, . . . , Xl]〈Xl〉 if wj ∈ Ll.

Let B,C be the rings constructed in Lemma 4.11 and φ, ψ be the homomor-
phisms constructed in Lemma 4.12. Let D = A×C B. We have that A×C B ⊆
A×B = R1× · · ·×R|W |, proving the property in the first bullet point, and the
property in the third bullet point is satisfied by the definitions of R1, . . . , R|W |.

The isomorphism obtained from this section’s poset construction is

ω : W → X tZ Y,

ω(wi) =

{
wi if wi ∈W \ Ln,
vi−|W\Ln| if wi ∈ Ln,

and the isomorphism obtained from Fontana’s Theorem is

χ : X tZ Y → SpecA×C B,

χ(w) =

{
p−1
A ◦ α(w) if w ∈ X,
p−1
B ◦ β(w) if w ∈ Y \ Z.

We claim that δ = χ ◦ ω satisfies the required properties. We have that
α(wi) = p−1

Ri
(〈0〉) for wi ∈ |W \ Ln| and pi = pRi ◦ pA. For similar reasons

as in Proposition 4.10, we also have that β(vi,1) = p−1
|W\Ln|+i(〈0〉). It then

follows that δ is of the required form.
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Again, we stress that in this final ring construction, the addition of the throw-
away indeterminates Xp, . . . , Xq does not affect the final result. Indeed, it is
only slightly more work to verify that, given n < p ≤ q, we can find a ring which
satisfies the first two bullet points, but we instead have

Rj =

{
k(Xp, . . . Xq) if wj ∈ L0,

k[X1, . . . , Xl, Xp, . . . , Xq] if wj ∈ Ll.

Example 4.14. Let W be as shown in Example 4.7. Let R1 = k,R2 = R3 =
k[X1]〈X1〉 and R4 = R5 = k[X1, X2]〈X2〉. Let A1 = k,B1 = R2 × R3 and
C1 = R2/ 〈X1〉 ×R3/ 〈X1〉 and let

φ : A1 → C1,

φ(f1) = (f1 + 〈X1〉 , f1 + 〈X1〉),
ψ : B1 → C1,

ψ(f2, f3) = (f2 + 〈X1〉 , f3 + 〈X1〉).

Then let A2 = A1 ×C1 B1, B2 = R4 × R5 and C2 = R4/ 〈X2〉 × R5/ 〈X2〉. We
have σ(1) = σ(2) = 2, so define

φ : A2 → C2,

φ(f1, f2, f3) = (f2 + 〈X2〉 , f2 + 〈X2〉),
ψ : B2 → C2,

ψ(f4, f5) = (f4 + 〈X2〉 , f5 + 〈X2〉).

Then D = A2 ×C2
B2 = (A1 ×C1

B1)×C2
B2 is such that W ∼= SpecD.
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4.3 Homomorphism Construction

Similar to the previous section, we will require for this homomorphism con-
struction that an order preserving function F satisfies an extra restriction. We
begin our homomorphism construction by defining the criterion which a ‘layer-
compressing’ function must fulfil.

Definition 4.15 (Layer-Compressing Function). Let W, W̃ be trees and F :
W → W̃ an order-preserving function. We say that F is layer-compressing if is
satisfies the following property:

w1 ≤ w2 with w1 ∈ Li, w2 ∈ Lj =⇒ F (w1) ∈ L̃k, F (w2) ∈ L̃l where l−k ≤ j−i.

Lemma 4.16. Let F : W → W̃ be a layer-compressing function. If w1 is
covered by w2 in W then either

� F (w1) = F (w2), or

� F (w1) is covered by F (w2).

Proof. By Lemma 4.5, if w2 ∈ Li then w1 ∈ Li+1. Since F is a layer-compressing
function, if F (w2) ∈ L̃j then F (w1) ∈ L̃k, where 1 = i+ 1− i ≥ k − j, so k = j

or k = j + 1. If k = j then F (w1), F (w2) ∈ L̃j which is a 0-dimensional poset.
But F (w1) ≤ F (w2) as F is order-preserving, so F (w1) = F (w2). Suppose
k = j+1. Then there exists a unique element w3 ∈ L̃j that covers F (w1) ∈ L̃j+1.

Then F (w2) ≥ w3 > F (w1), but F (w2), w3 ∈ L̃j which is 0-dimensional, so
F (w2) = w3 and hence covers w1.

Harking back to our second 1-dimensional homomorphism construction, we will
track the behaviour of subsets of the tree, build homomorphisms which cor-
respond to them, and show that the ‘fibre product constraint’ (φ(a) = ψ(b))
is satisfied. Building the homomorphisms is simple, as our ring construction
guarantees that we have an individual ring corresponding to each element of
the tree. However it is cumbersome to show that the fibre product constraint is
satisfied directly, so we prove the following result.

Proposition 4.17 (Equivalence of the Fibre Product Constraint). Let W be
an n-dimensional tree with D as constructed in Theorem 4.13. Then r =(
f1
g1
, . . . ,

f|W |
g|W |

)
∈ D if and only if

fi(X1, . . . , Xk, 0)

gi(X1, . . . , Xk, 0)
=
fj(X1, . . . , Xk)

gj(X1, . . . , Xk)

for all wi ∈ Lk+1, wj ∈ Lk such that wj covers wi.

Proof. We proceed by induction on the dimension of W . Let W be a 1-

dimensional tree. First let r =
(
f1
g1
, . . . ,

f|W |
g|W |

)
∈ D. Then we have

φ

(
f1

g1

)
= ψ

(
f2

g2
, . . . ,

f|W |

g|W |

)
.
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By definition of φ and ψ, we have f1
g1

+ 〈X1〉 = fi(X1)
gi(X1) + 〈X1〉 for all i ∈

{2, . . . , |W |}. Thus there exists f(X1)
g(X1) ∈ k[X1]〈X1〉 such that

f1

g1
=
fi(X1)

gi(X1)
+X1

f(X1)

g(X1)
.

Since multiples of X1 are non-units in k[X1]〈X1〉, it is valid to evaluate fi(X1)
gi(X1) +

X1
f(X1)
g(X1) at X1 = 0, and we obtain

f1

g1
=
fi(0)

gi(0)
.

Now assume r1
s1

:= f1
g1

= fi(0)
gi(0) . Our base case is complete if we can find a solution

f
g ∈ k[X1]〈X1〉 of the equation

fi(X1)

gi(X1)
=
r1

s1
+X1

f(X1)

g(X1)

=
r1g(X1) + s1X1f(X1)

s1g(X1)
.

We have that
f(X1)

g(X1)
=
s1X

−1
1 (fi(X1)− r1s

−1
1 gi(X1)

s−1
1 gi(X1)

is a solution, but the solution is only valid if fi(X1) − r0s
−1
0 gi(X1) ∈ 〈X1〉 i.e.

if the constant term is zero. By assumption, we have

fi(0)− r0s
−1
0 gi(0) = r0 − r0s

−1
0 s0 = 0,

proving that the solution is valid and concluding the base case.

Now assume that the induction hypothesis holds for trees of dimensions 1 to

n − 1. Let W be an n-dimensional tree. First let r =
(
f1
g1
, . . . ,

f|W |
g|W |

)
∈ D ⊆

A×C B. This means
(
f1
g1
, . . . ,

f|W\Ln|
g|W\Ln|

)
∈ A, and A is a ring constructed by ap-

plying Theorem 4.13 to W \Ln, which by Lemma 4.4 is an n−1-dimensional tree.
Therefore by assumption, the desired property holds for k ∈ {0, . . . , n− 2}, but
it remains to be proven for k = n− 1. If r ∈ D then we have

φ

(
f1

g1
, . . . ,

f|W\Ln|

g|W\Ln|

)
= ψ

(
f|W\Ln|+1

g|W\Ln|+1
, . . . ,

f|W |

g|W |

)
.

Hence if wi ∈ Ln is covered by wj ∈ Ln−1 then

fi(X1, . . . , Xn)

gi(X1, . . . , Xn)
+ 〈Xn〉 =

fj(X1, . . . , Xn−1)

gj(X1, . . . , Xn−1)
+ 〈Xn〉 .
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In other words, there exists f
g ∈ k[X1, . . . , Xn]〈Xn〉 such that

fi(X1, . . . , Xn)

gi(X1, . . . , Xn)
=
fj(X1, . . . , Xn−1)

gj(X1, . . . , Xn−1)
+Xn

f(X1, . . . , Xn)

g(X1, . . . , Xn)
.

Since multiples of Xn are non-units in k[X1, . . . , Xn]〈Xn〉, it is valid to evaluate
the function at Xn = 0, hence we have

fi(X1, . . . , Xn−1, 0)

gi(X1, . . . , Xn−1, 0)
=
fj(X1, . . . , Xn−1)

gj(X1, . . . , Xn−1)
.

Now assume we have fi(X1,...,Xn−1,0)
gi(X1,...,Xn−1,0) =

fj(X1,...,Xn−1)
gj(X1,...,Xn−1) . The induction step is

complete if we can find a solution f
g ∈ k[X1, . . . , Xn]〈Xn〉 to the equation

fi(X1, . . . , Xn)

gi(X1, . . . , Xn)
=
fj(X1, . . . , Xn−1)

gj(X1, . . . , Xn−1)
+Xn

f(X1, . . . , Xn)

g(X1, . . . , Xn)
=
fjg + gjXnf

gjg
.

Recalling that fj , gj are both units in k[X1, . . . , Xn]〈Xn〉, we have that

f(X1, . . . , Xn)

g(X1, . . . , Xn)
=
gjX

−1
n (fi(X1, . . . , Xn)− fjg−1

j gi(X1, . . . , Xn))

g−1
j g(X1, . . . , Xn)

is a solution, but the solution is only valid if

(fi(X1, . . . , Xn)− fjg−1
j gi(X1, . . . , Xn)) ∈ 〈Xn〉

i.e. (fi(X1, . . . , Xn−1, 0) − fjg
−1
j gi(X1, . . . , Xn−1, 0)) = 0, which is true by

assumption.

If we add more units to the ring, as we will for the homomorphism construction,
the proof is near-indentical but the statement of the proposition changes to state

that
(
f1
g1
, . . . ,

f|W |
g|W |

)
∈ D if and only if

fi(X1, . . . , Xk, 0, Xp, . . . , Xq)

gi(X1, . . . , Xk, 0, Xp, . . . , Xq)
=
fj(X1, . . . , Xk, Xp, . . . , Xq))

gj(X1, . . . , Xk, Xp, . . . , Xq))
.

Theorem 4.18. Let W, W̃ be trees and F : W → W̃ a layer-compressing
function. Then there exist rings D, D̃ and a homomorphism Φ : D̃ → D such
that W ∼= SpecD, W̃ ∼= Spec D̃ and Spec Φ is isomorphic to F .

Proof. Suppose W is of dimension n and W̃ is of dimension ñ. Let D, D̃ be rings
constructed using Theorem 4.13 using W, W̃ respectively, but for simplicity
of notation we let indeterminates in the ring D̃ be given as X1, . . . , Xñ and
indeterminates in the ring D be given as Y1, . . . , Yn+ñ. For convenience, let
D̃ be the ring described at the end of the chapter with no extra throw-away
indeterminates, and let D be the ring constructed by taking p = n + 1 and
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q = n + ñ. Recall that the elements of W, W̃ are labelled w1, . . . , w|W | and
w̃1, . . . , w̃|W̃ | and define the following function:

σ : {1, . . . , |W |} →
{

1, . . . ,
∣∣∣W̃ ∣∣∣} ,

σ(i) = j ⇐⇒ F (wi) = w̃j .

Suppose F (w1) ∈ Lm. Define the following family {Hi}ñi=1 of sets:

Hi =

{
∅ if i ≤ m or i > m+ n,

{i−m} if m < i ≤ m+ n.

The sets Hi are pairwise disjoint, so we can use them to define a function η like
that in Lemma 2.14. The function is

η : {X1, . . . , Xñ} → {Y1, . . . , Yn, Yn+1, . . . , Yn+ñ} ,

η =

{∏
j∈Hi Yj if Hi is non-empty,

Yn+i otherwise,

and by the same reasoning as in the proof of Lemma 2.14, this gives rise to an
algebraically independent set {η(Xi)}ñi=1. If wi ∈ Lk and F (wi) = w̃σ(i) ∈ L̃l
then D̃σ(i) = k[X1, . . . , Xl]〈Xl〉. We want to check that the homomorphism

Ψi : k[X1, . . . , Xl]→ Ri,

Ψi(f(X1, . . . , Xl)) = f(η(X1), . . . , η(Xl)),

is well-defined i.e. η(Xi) ∈ {Y1, . . . , Yk, Yn+1, . . . , Yn+ñ} for p ∈ {1, . . . , l}. If
η(Xp) = Yn+p then η(Xp) ∈ {Y1, . . . , Yk, Yn+1, . . . , Yn+ñ} so assume η(Xp) =
Yp−m. Then we either need p ≤ m, but p > m by assumption, or p−m > j. Note

p ≤ l. Recall that w1 ∈ L0, F (w1) ∈ L̃m and wi ∈ Lk with F (wi) = w̃j ∈ L̃l.
Then, since F is layer compressing, we have k− 0 ≥ l−m ≥ p−m, so we never
have p−m > k. Hence Ψi is well-defined.

Let S = k[X1, . . . , Xl] \ 〈Xl〉. We want to check that g ∈ S implies Ψi(g) is a
unit of Ri. Suppose g ∈ S but Ψi(g) is a non-unit of Ri. Then Ψi(g) ∈ 〈Yk〉, so
Yk | Ψi(g). Then there exists some η(Xp) = Yk, so we can write g = g′Xp. If
we can show that η(Xp) = Yk implies p = l, then we are done. Note that p ≤ l,
so if p 6= l then p < l. Then we have p−m < l −m ≤ k, so if η(Xp) = Yk then
p = l. Then g′Xl ∈ 〈Xl〉, so g /∈ S, meaning Ψi(g) is a unit of Ri for all g ∈ S.
Thus by the universal property of localisation we have that

Φi : R̃σ(i) → Ri,

Φi

(
f

g

)
=

Ψi(f)

Ψi(g)
,
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is a well-defined homomorphism. Now define the homomorphism

Φ : D̃ → D,

Φ

(
f1

g1
, . . . ,

f|W̃ |
g|W̃ |

)
=

(
Φ1

(
fσ(1)

gσ(1)

)
, . . . ,Φ|W |

(
fσ(|W |)

gσ(|W |)

))
.

We claim that Φ is well-defined (that is, elements in its image satisfy the fibre
product constraint), and we use Proposition 4.17 to prove this claim. Suppose
wi ∈ Lk+1 is covered by wj ∈ Lk in W . Then by Lemma 4.16, we have
either w̃σ(i) = F (wi) = F (wj) = w̃σ(j) or that w̃σ(i) = F (wi) is covered by

w̃σ(j) = F (wj). If F (wi) = F (wj) then σ(i) = σ(j), so Φi

(
fσ(i)
gσ(i)

)
= Φj

(
fσ(j)
gσ(j)

)
.

Hence the evaluation of both functions at Yk+1 = 0 is equal, so the fibre product
constraint is satisfied. If w̃σ(i) = F (wi) is covered by w̃σ(j) = F (wj) then we
have that

fσ(i)(X1, . . . , Xl, 0)

gσ(i)(X1, . . . , Xl, 0)
=
fσ(j)(X1, . . . , Xl)

gσ(j)(X1, . . . , Xl)
.

Under Φi and Φj we obtain

Φi

(
fσ(i)(X1, . . . , Xl, Xl+1)

gσ(i)(X1, . . . , Xl, Xl+1)

)
=
fσ(i)(η(X1), . . . , η(Xl), η(Xl+1))

gσ(i)(η(X1), . . . , η(Xl), η(Xl+1))

Φj

(
fσ(j)(X1, . . . , Xl)

gσ(j)(X1, . . . , Xl)

)
=

fσ(j)(η(X1), . . . , η(Xl)

gσ(j)(η(X1), . . . , η(Xl))
.

We claim that η(Xl+1) = Yk+1. An analogy to an earlier argument tells us
that η(Xp) = Yk+1 implies p = l + 1, so it only remains to be shown that

m < l + 1 ≤ m + n. We have w1 ∈ L0 with F (w1) ∈ L̃m and wi ≥ w1 with
F (wi) ∈ L̃l, so l ≥ m, meaning l + 1 > m. We have that k + 1 ≤ n, so
n ≥ k+ 1− 0 ≥ l+ 1−m, meaning l+ 1 ≤ n+m. Thus η(Xl+1) = Yk+1. Then
we have

Φi

(
fσ(i)(X1, . . . , Xl, Xl+1)

gσ(i)(X1, . . . , Xl, Xl+1)

)
=
fσ(i)(η(X1), . . . , η(Xl), Yk+1)

gσ(i)(η(X1), . . . , η(Xl), Yk+1)

Φj

(
fσ(j)(X1, . . . , Xl)

gσ(j)(X1, . . . , Xl)

)
=

fσ(j)(η(X1), . . . , η(Xl)

gσ(j)(η(X1), . . . , η(Xl))
,

implying

Φi

(
fσ(i)(X1, . . . , Xl, Xl+1)

gσ(i)(X1, . . . , Xl, Xl+1)

)∣∣∣∣
Yk+1=0

=
fσ(i)(η(X1), . . . , η(Xl), 0)

gσ(i)(η(X1), . . . , η(Xl), 0)

=
fσ(j)(η(X1), . . . , η(Xl)

gσ(j)(η(X1), . . . , η(Xl))

= Φj

(
fσ(j)(X1, . . . , Xl)

gσ(j)(X1, . . . , Xl)

)
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meaning the fibre product constraint is satisfied.

Finally we show that Spec Φ is isomorphic to F . We have that

δ : W → SpecD,

δ(wj) = p−1
j (〈0〉),

δ̃ : W̃ → Spec D̃,

δ(w̃j) = p̃−1
j (〈0〉),

are order isomorphisms. We must show that δ̃ ◦ F (wi) = Φ−1 ◦ δ(wi), so it
suffices to show that p̃−1

σ(i)(〈0〉) = Φ−1 ◦ p−1
i (〈0〉) for all i. Using a result which

can be proven in the same way as Lemma 3.19, we have that

p̃−1
σ(i)(〈0〉) = p̃−1

σ(i) ◦ Φ−1
i (〈0〉) = Φ−1 ◦ p−1

i (〈0〉),

proving that Spec Φ is isomorphic to F .
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Example 4.19. Let F : W → W̃ be the layer-compressing function pictured
below.

W

w1

w2

w3 w4 w5

W̃

w̃1

w̃2 w̃3

w̃4 w̃5

F

In Example 4.14 we found a ring D̃ such that W̃ ∼= Spec D̃. If we let R1 =
k(Y3, Y4), R2 = k[Y1, Y3, Y4]〈Y1〉, R3 = R4 = R5 = k[Y1, Y2, Y3, Y4]〈Y2〉 and let

A1 = R1,

B1 = R2,

C1 = R2/ 〈Y1〉 ,
A2 = A1 ×C1

B1,

B2 = R3 ×R4 ×R5,

C2 = R3/ 〈Y2〉 ×R4/ 〈Y2〉 ×R5/ 〈Y2〉 ,

(where A2 is the fibre product over φ, ψ as obtained in the ring construction),
then D = A2 ×C2 B2 is such that W ∼= SpecD. We have σ(1) = σ(2) = σ(5) =
2, σ(3) = 5 and σ(4) = 5. We have m = 1, so H1 = ∅, H2 = {1}. These sets
induce the function

η : {X1, X2} → {Y1, Y2, Y3, Y4} ,
η(X1) = Y3, η(X2) = Y1.

Finally, the homomorphism
Φ : D̃ → D,

Φ

(
f1

g1
,
f2(X1)

g2(X1)
,
f3(X1)

g3(X1)
,
f4(X1, X2)

g4(X1, X2)
,
f5(X1, X2)

g5(X1, X2)

)
=

(
f2(Y3)

g2(Y3)
,
f2(Y3)

g2(Y3)
,
f5(Y3, Y1)

g5(Y3, Y1)
,
f4(Y3, Y1)

g4(Y3, Y1)
,
f2(Y3)

g2(Y3)

)
,

is such that Spec Φ is isomorphic to F .
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